1. Tire size codes

Explain the meaning of the following tire size codes:

- A. A. P 205/75R14 80T
- B. B. P 16/205/55 78S
- C. P 215/65R15 96H
- D. 480/80R46 78P M+S

2. Tire of Chevrolet Corvette Z06

A model of Chevrolet Corvette Z06T M uses the following tires.

- Front tire 275/35ZR18 Rear tire 325/30ZR19
- A. What is the speed of this car if its rear tires are turning at $\omega = 2000$ rpm?
- B. At that speed, what would be the angular velocity of the front tires?

3. Axle load

Consider a car with the following specifications that is parked on a level road. Find the load on the front and rear axles.

$$m = 1765 \text{ kg } l = 2.84 \text{m}$$
 $a1 = 1.22 \text{m}$ $a2 = 1.62 \text{m}$

4. Mass center height

McLaren SLR 722 has the following specifications:

Front tire 255/35ZR19 Rear tire 295/30ZR19
$$m = 1649 \text{ kg}$$
 $l = 2700 \text{mm}$

When the front axle is lifted H = 540mm, assume that

$$a_1 = a_2$$
 $F_{z2} = 0.68$ mg.

What is the height h of the mass center?

5. Maximum acceleration.

Honda CR-VT M is a midsize SUV car with the following specifications.

$$m = 1550 \; kg \qquad \qquad 1 = 2620 mm \qquad \quad a_1 = a_2 \qquad \qquad h = 720 mm \qquad \quad \mu_x = 0.8$$

And determine the maximum acceleration of the car if

- (a) The car is rear-wheel drive
- (b) The car is front-wheel drive
- (c) The car is four-wheel drive.

6. A car with a trailer

Volkswagen Touareg TM is an all-wheel drive car with:

$$m = 2268 \text{ kg } l = 2855 \text{mm}.$$

Assume a1 = a2 and the car is pulling a trailer with:

$$m_t = 600 \text{ kg}$$
 $b_1 = 855 \text{mm}$ $b_2 = 1350 \text{mm}$ $b_3 = 150 \text{mm}$ $h_1 = h_2$.

If the car is accelerating on a level road with acceleration a = 2m/s2, what would be the forces at the hinge?

7. A parked car on a banked road.

Cadillac Escalade is a SUV car with

$$m = 2569.6$$
kg $l = 2946.4$ mm $w_f = 1732.3$ mm $w_r = 1701.8$ mm.

Assume $b_1 = b_2$, h = 940mm, and use an average track to determine the wheels load when the car is parked on a banked road with $\phi = 12$ deg.

8. Required camber angle.

Consider the tire for which we have estimated the behavior shown in Figure below. Assume $F_z = 4000$ N and we need a lateral force $F_y = -3000$ N. If $\alpha = 4$ deg, what would be the required camber angle γ ? Estimate the coefficients C_α and C_γ .

9. Radius of rotation.

Consider a two-axle truck that is offered in three different wheelbases.

$$l = 109$$
 in $l = 132.5$ in $l = 150.0$ in

If the front track of the vehicles is w=70in and $a_1 = a_2$, calculate the radius of rotations if $\delta = 30$ deg.

10.A three-axle truck.

Consider a three-axle truck that has only one steerable axle in front.

The dimensions of the truck are

$$a1 = 5300$$
mm $a_2 = 300$ mm $a_3 = 1500$ mm $w = 1800$ mm.

Determine maximum steer angles of the front wheels if the truck is Supposed to be able to turn with R = 11m.

11.A vehicle with a one-axle trailer.

Determine the angle between the trailer and vehicle with the following dimensions.

$$a_1 = 1000 mm$$
 $a_2 = 1300 mm$ $w_v = 1500 mm$ $b_1 = 1200 mm$ $b_2 = 1800 mm$

$$w_t = 1100 mm \qquad \qquad g = 800 mm \qquad \delta_i = 12 deg.$$

What is the rotation radius of the trailer R_t, and the vehicle R?

Determine minimum radius R_{min} , maximum R_{Max} , and difference radius ΔR ?

12.Different front and rear tracks.

Lotus 2-Eleven is a RWD sports car with the following specifications.

$$l = 2300 \text{mm} \text{ w}_f = 1457 \text{mm} \text{ w}_r = 1607 \text{mm} \text{ Front tire} = 195/50 \text{R} 16$$

Rear tire =
$$225/45R17$$
 $F_{z1}/F_{z2}=38/62$

Determine the angular velocity ratio of ω_0/ω_i , R, δ_i , and δ_0 for δ =5deg.

13. Turning radius of a 4WS vehicle.

Consider a FWS (Front wheel steering) vehicle with the following dimensions.

$$l = 2300$$
mm $w_f = 1457$ mm $w_r = 1607$ mm $a_1/a_2 = 38/62$

Determine the turning radius of the vehicle for δ_{f1} = 5deg. What should be the steer angles of the front and rear wheels to decrease 10% of the turning radius, if we make the vehicle 4WS?

14. Coordinates of the turning center.

Determine the coordinates of the turning center for the vehicle in

Exercise 9 if
$$\delta_{f1}$$
= 5deg and c_1 = 1300mm.

15.A three-axle truck.

Consider a three-axle truck that has only one steerable axle in front. The dimensions of the truck are

$$a_1 = 5300 \text{mm}$$
 $a_2 = 300 \text{mm}$ $a_3 = 1500 \text{mm}$ $w = 1800 \text{mm}$.

Determine maximum steer angles of the front wheels if the truck is supposed to be able to turn with R=11m.