ADAMS/Car
Training Guide

VERSION 11.0

PART NUMBER
110CARTRG-02

Visit us at: www.adams.com

http://www.adams.com

U.S. Government Restricted Rights: If the Software and Documentation are provided in connection with a

government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure is
subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Mechanical Dynamics, Incorporated, 2300 Traverwood Drive, Ann Arbor, Michigan
48105.

The information in this document is furnished for informational use only, may be revised from time to time,
and should not be construed as a commitment by Mechanical Dynamics, Incorporated. Mechanical
Dynamics, Incorporated, assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document.

This document contains proprietary and copyrighted information. Mechanical Dynamics, Incorporated
permits licensees of ADAMS® software products to print out or copy this document or portions thereof
solely for internal use in connection with the licensed software. No part of this document may be copied for
any other purpose or distributed or translated into any other language without the prior written permission of
Mechanical Dynamics, Incorporated.

©2001 by Mechanical Dynamics, Incorporated. All rights reserved. Printed in the United States of America.

ADAMS ®is a registered United States trademark of Mechanical Dynamics, Incorporated.
All other product names are trademarks of their respective companies.

CONTENTS

Welcome to ADAMS/Car Training 7

A Brief History of ADAMS 8

About Mechanical Dynamics 9

Referencing Online Guides 10

Getting Help at Your Job Site 12

A Review of Basic ADAMS Terminology 13

Introducing ADAMS/Car 15

Motivation for Using ADAMS/Car 16

User Modes 20

Database Structure—A Directory Hierarchy 21
Configuration File 22

Workshop 1—Open and Run an Assembly 23

Basic Concepts 29

DataHierarchy 30

Test Rig 32

Magjor and Minor Roles 33

Naming Convention 34

Workshop 2—Templates versus Subsystems 35

Creating and Adjusting Subsystems 41

Creating Subsystems 42

Adjusting Hardpoints 43

Adjusting Parameter Variables 44

Adjusting Mass Properties 45

Adjusting Springs and Dampers 46

Workshop 3—Creating and Adjusting Suspensions 48

Using the Curve Manager 55

Property File Types 56

Creating Property Files 57

Modifying an Existing Property File 60

Plot versus Table 61

Workshop 4—Modifying Springs with the Curve Manager 62

CONTENTS. ..

Creating and Simulating Suspensions 65

Creating Suspension Assemblies 66
Half-Vehicle Analyses 67

Suspension Parameters 68

Creating Loadcases 69

Warning Messages 70

Files Produced by Analyses 71

Workshop 5—Running Suspension Analyses 72

Creating and Simulating Full Vehicles 73

Creating Full-Vehicle Assemblies 74

Shifting Subsystems 75

Updating Subsystems 76

Updating Assemblies 77

Full-Vehicle Analyses 78

Adjusting Mass Automatically 80

Workshop 6—Running Full-Vehicle Analyses 81

Driving Machine 83

Standard Driver Interface (SDI) and Driving Machine 84
Why Use SDI? 85

Creating Inputsfor SDI 86

Creating .dcf and .dcd Files 88

Workshop 7—Editing .dcf and .dcd Files 98

Plot Configuration Files 105

What isaPlot Configuration File? 106

Workshop 8—Creating Plot Configuration Files 107
Parameterization 109

Parameterization in ADAMS/Car 110
Creating Hardpoints 111

Creating Construction Frames 113
Location Parameterization 115
Orientation Parameterization 120

4 Contents

CONTENTS. ..

Building Templates 127

Template Overview 128

Template Topology 129

File Architecture 130

Building aNew Template 132

Types of Parts 133

Rigid Bodies (Parts) 134

Flexible Bodies (Parts) 135

Geometry 136

Attachments (Joints and Bushings) 137
Springs 138

Dampers 140

Bumpstops and Reboundstops 141
Suspension Parameter Array 142
General Advice 143

Workshop 9—Template-Builder Tutorial 144

Communicators 145

Types of Communicators 146

Classes of Communicators 147

Communicator Roles 149

Naming Communicators 150

Matching Communicators During Assembly 151

Matching Communicators with Test Rigs 153

Workshop 10—Getting Information About Communicators 155

Using Flexible Bodies 159

Flexible Body Overview 160
Limitations of Flexible Bodies 161
Getting Flexible Bodies 162
Workshop 11—Flex Tutorial 163

Requests 167

Creating New Requests 168
Types of Requests 169

Contents

CONTENTS. ..

Tires 171

Tire Overview 172

ADAMS/Tire Modules 173

TireModels 175

Tire Analyses 176

Workshop 12—Building a Wheel Template 177

Exploring Templates 181

Investigating Templates 182

Understanding Templates 183

About the Database Navigator 184

Workshop 13—Exploring and Completing Templates 186

Additional Applications 193

Conceptual Suspension Module and Driveline 194

Linear and Controls 196

Insight and Hydraulics 197

Vibration and Durability 198

Workshop 14—Using ADAMS/Linear with ADAMS/Car 199

Workshop 15—Full-Vehicle Assembly 205

Example Analyses 213

Types of Analyses 214

Gather Datafor the Model 215

Packaging Analysis on Suspension 216
Kinematic Analysis on Suspension 217
Suspension-Compliance Analysis 219
Static-Loading Durability Analysis 220
Dynamic-Loading Durability Analysis 222
Front Suspension Analyses 223
Full-Vehicle Design and Analysis 224

Four-Post Vertical Excitation Test 225
ADAMS/Car Files 259

6 Contents

WELCOME TO ADAMS/CAR TRAINING

Welcome to ADAMS/Car training. In this course, you learn how to use
ADAMS/Car to create, catalog, and analyze suspension and vehicle
assemblies.

What's in this section:

= A Brief History of ADAMS, 8

= About Mechanical Dynamics, 9

= Referencing Online Guides, 10

= Getting Help at Your Job Site, 12

= A Review of Basic ADAMS Terminology, 13

A Brief History of ADAMS

ADAMS: Automatic Dynamic Analysis of Mechanical Systems.
Technology was implemented about 25 years ago.

Mechanical Dynamics Incorporated formed by researchers who
developed the base ADAMS code at University of Michigan, Ann
Arbor, MI, USA.

Large displacement code.
Systems-based analysis.

Original product was ADAMS/Solver, an application that solves
nonlinear numerical equations. You build models in text format and
then submit them to ADAMS/Solver.

In the early 90's, ADAMS/View was released, which allowed users
to build, simulate, and examine results in a single environment.

Today, industry-specific products are being produced, such as
ADAMS/Car, ADAMS/Rail, and ADAMS/Engine.

8 Welcome to ADAMS/Car Training

About Mechanical Dynamics

Find a list of ADAMS products at:

http://www.adams.com/mdi/product/modules.htm

Learn about the ADAMS - CAD/CAM/CAE integration at:

http://www.adams.com/mdi/product/partner.htm

Find additional training at:

http://support.adams.com/training/training.html

..or your local support center.

Welcome to ADAMS/Car Training

http://www.adams.com/mdi/product/modules.htm
http://www.adams.com/mdi/product/partner.htm
http://support.adams.com/training/training.html

Referencing Online Guides

Referencing the ADAMS/Car online guides

Adobe Acrobat - [home.pdif] H=1E3

) File Edit Document Tools View ‘Window Help =18 x|
NEEHESE N)+ » DE0 58688 @E0H

@ »
& A) j
=

ES

i Road Map to ADAMS Documentation

=]

%

U

al oo

T

w Product Guides

Examples and Mini-Tutorials
* Setup Guides

Shared Guides

Release Notes

2

Order printad guidas

]
s

w0 L] o DL emeen B =]]

Copyight 2000 Muchantest Dymamies, Inc. Alrights rasarvad. |

>

Adobe Acrobat - [product] [_ O[]
) File Edit Document Tools ‘iew Window Help ST

ReEEHSE|) i« DEM %5 &L

xN

Product Guides

ADAMS/Car
ADAMS/Controls
ADAMS/DMU Replay
ADAMS/Driver
? N ADAMS/Durability
ADAMS/Engine
ADAMS/Flex
ADAMS/Hydraulics
ADAMS/Insight
ADAMS/Linear
ADAMS/PostProcessor
ADAMS/Pre
ADAMS/Rail
ADAMS/SDK
ADAMS/Solver
ADAMS)/Tire
ADAMS/Vibration

N
.
v
.
v
[

ADAMS/View
CAT/ADAMS
MECHANISM/Pro

,
T Lo Ll [erron Bl o]]

2
=i

'
)
|

>

Adobe Acrobat - [car.pdf) BEE

B Fie Edt Dorument Toos Phiie Viw Widow bl

N@eEESE)| +e» DOE]MHRENE

B

R |R =@ 8] 5T

N { S

He

N
.

AD,

Road Map to
ADAMS/Car Documentation

§ User’s Guides
e ADAMS/Car Components

g

AMS/Car Templates

Running Analyses in ADAMS/Car
Customizing ADAMS/Car

Conceptual Suspension Modeling
Getting Started

"\ Template-Based Guides

Component Descriptions

Building Templates

Managing Plots

Configuring

" I o DD emvon (B[]

10

Welcome to ADAMS/Car Training

Searching

Online Guides

Doing global searches on any online ADAMS guide

Adobe Acrobat - [product] [_ O[]

) File Edt Document Tools View Window Help =8 X
E@RHEEE)+ DO0] %D A0 ﬁ

»

) =

Product Guides
ADAMS/Car
ADAMS/Controls

.. ADAMS/DMU Replay

.

ADAMS/Driver
ADAMS/Durability
ADAMS/Engine
ADAMS/Flex
ADAMS/Hydraulics
+ ADAMS/Insight
. ADAMSILinear
ADAMS/PostProcessor
v ADAMS/Pre
' ADAMS/Rail

N

Find Rt

obe Acrobat rch

esults Containing Text

toe angle
Clear |
Indexes. |

r— Option:

[~ Match Case

I word Stemming [Thesauns |
™ Prosimity

™ Sounds Like

\Saarching 2 out of 2 indexes.

'
1 ADAMS/SDK
\ ADAMS/Solver
ADAMS/Tire .
. Title Found 7 out of 90 documents.
N ADAMS/Vibration
4 ADAMS/View] @ Managing Plots
) .
. CAT/ADAMS E@E @ Using ADAMSInzight with ADAMSCar
[MECHANISM/Pro - B SDAMSICar Templates
@] 10w [=| [l o] ot |v]o][ermxem L] =] <]] @ ADAMSICar Components
o Using ADAMSAnsight with ADAMSMigw
o Getting Started Using ADAMSICar
Info...
dobe Acrobat ysis.pdf] [-Ox] [i
=erv\Customer SupportiShare\pdfdocscarianalysis!
T T R | e o v
Ne@HSE K)M e» # PR3
[eskmars o St S utss SN v
e : g
([Road Map o ADAMSICar Documeniation
Ty = 3 Raming Analyses in ADAWS Cox Running Arelyses in ADAMS Car &
G| Fmemeos e Undarsanding Susponsin ChsacersicCatlatons
B #-Dntroducing Suspension Anayses
| %0 Understanding Suspension Characts
| Qymoduong ruvenice sayses [Toe Anglel
| %[Using the Diving Mchine
5| 03 oetning rver Goriol Fies Description NI the angle between the longitudinal axis ofthe vehicle and
| #-D)Defning Oriver Coniral Data Fies the line of intersection of the wheel plane and the road surface.
g () Example Suspension Loadcase File ADAMS/Car reports Jin radians. It is positive if the wheel
@[] Example Wheek-Envelope Files front is rotated in towarc icle body.
| #-[3 orving Machine TestRig Structure.
[Example Driver Control Files Request . L
" Dlincex Names —t
j’ Inputs Wheel center axis unit vectors - left and right
1
4 Method ADAMS/Car uses the direction cosines in the x- and y-directions of the
| wheel center axis relative 10 the road to calculate S such that:
Lefttoe = tan'! (DCOSX/DCOSY)
Right toe = tan™" (-DCOSX/DCOSY)

Welcome to ADAMS/Car Training

L~~~

11

Getting Help at Your Job Site

Online guides

Access help on help from:
= Help menu of any ADAMS product

» Help tool [on the Documentation Road Maps

3#{ ADAMS: Mechanical Dynamics - Dynamic Dimensions, Vol 3 - Netscape

Knowledge base
| 2. <3 & &

Back. Forard Reload Home Search Metecape Print Securiy Stop

Go to http://support.adams.com/kb

" Bookmarks 1 [rttec v acrns d dyncim/vol_kbtour htm

For a quick tour, go to: http:/ 1
www.adams.com/mdi/news/dyndim/ (=
vol3_kbtour.htm

Take a Quick Tour of the ADAMS Knowledge Base

ve you visited the ADAMS Knowledge Base recenthy? I not. you'll find a wealth of technical information
fi

H
¥
Davelo
B.
P

ASK email-based users group

Go to http://support.adams.com/support/

tech_ask.html

Consulting services

Enter the test
& Bool

Go to: http://support.adams.com/support/
cnsltsrv.html

Knowtntge Base Help Swarch e |[IShow ABass opisns 10|

A The Meru tab provides options for querying the Knowledge Base

and links you to Help optiens,
Pm~aapsueBatoh Pitih

Technical support

To find your support center, go to: http://support.adams.com/support/suppcent.html

To read the Service Level Agreement, go to: http:/support.adams.com/support/sla_agree.html

12 Welcome to ADAMS/Car Training

http://support.adams.com/kb
http://www.adams.com/mdi/news/dyndim/vol3_kbtour.htm
http://www.adams.com/mdi/news/dyndim/vol3_kbtour.htm
http://support.adams.com/support/tech_ask.html
http://support.adams.com/support/tech_ask.html
http://support.adams.com/support/cnsltsrv.html
http://support.adams.com/support/cnsltsrv.html
http://support.adams.com/support/suppcent.html
http://support.adams.com/support/sla_agree.html

A Review of Basic ADAMS Terminology

ADAMS/Solver

The solution engine.

ADAMS/Solver dataset (*.adm)
The ASCII file submitted to ADAMS/Solver.

ADAMS/Solver command (*.acf)
An ASCII file that contains commands to control how ADAMS/Solver runs the model.

ADAMS/Solver output files

Graphics (*.gra) - Information about how graphics work.
Request (*.req) - Contains output for a specific set of results.

Results (*.res) - Contains results for every entity. Thisfileistoo big, and is not
produced by ADAMS/Car as default; you can, however, change ADAMS/Car to print
this.

M essage (*.msg) - Information about the solver/simulation/problems.

Output (*.out) - Output including initial conditions and request, and content can
depend on output specifications.

Welcome to ADAMS/Car Training 13

Notes

14 Welcome to ADAMS/Car Training

1

INTRODUCING ADAMS/CAR

This module discusses the advantages of using ADAMS/Car, aswell asthe
organization of the basic files.

What's in this module:
= Motivation for Using ADAMS/Car, 16
= User Modes, 20
= Database Structure—A Directory Hierarchy, 21
= Configuration File, 22

= Workshop 1—Open and Run an Assembly, 23

15

Motivation for Using ADAMS/Car

Bridges departments by sharing models and data
Facilitates quick subsystem changes

Templates

Test lab Engine Advanced

. engineering

— Suppliers
|
I Y — I
Driveline Chassis Body .
engineering engineering

16 Introducing ADAMS/Car

Motivation for Using ADAMS/Car...

Bridges departments by sharing models and data

Different departments can work with the same database, which minimizes data loss.

Test lab

Driveline

ESS

Engine

Advanced
engineering

—e

.

>

e

e

Suppliers

C I
(I |

Chassis
engineering

Body

engineering

Introducing ADAMS/Car

17

Motivation for Using ADAMS/Car...

Facilitates quick subsystem changes

Y ou can easily replace one subsystem without changing any other part of the vehicle.

_5 MacPherson
2

R

/

P

&
\# SLA

18 Introducing ADAMS/Car

Motivation for Using ADAMS/Car...

Templates
Allow you to tailor one system for multiple vehicles.

y@jgpn_pen_sﬂmn kp2_2

‘f‘l',f;»l‘f—‘ng d_iriiper_strutinedia_frame

B2 MR e eyt
[y

¥ Sekiframe_rear

&
ca_frant hpr_drive_shafi_inr Wjﬂmﬁkp 2

¥
gl _sper_strutinertia_frame
bl subfrarme_reat

%ﬁsutﬂrame
A ;

o if i

W@W_ﬁaam

{introl_arm.inertia_frame
frfhc e gk

hpl_subirame_fro _Iowet_cordrol_armn kpl _1

Introducing ADAMS/Car

User Modes

Within the ADAMS/Car configuration file (.acar.cfg), the
particular application of ADAMS/Car is specified as either
standard user mode and expert user mode.

Expert user (Template Builder and Standard Interface)

= Allows creation of building-block of ADAMS/Car, templates, with access to
Template Builder

= For experienced ADAMS users
= Accessto al ADAMS modeling entities

Standard user (Standard Interface only)
= Specifically for designers and testing engineers
» Uselibraries from the ADAMS/Car database to easily create vehicle (sub)assemblies

= Simulation environment tailored to automotive standards

20 Introducing ADAMS/Car

Database Structure—A Directory Hierarchy

A database is a collection of directories
stored on the hard drive. The top
directory, which has the extension .cdb,
stores a number of tables (directories).
Each table is a placeholder for model
information.

Three types of databases:

= Shared - Common to al users, provided by MDI with
examplefiles.

= Private- User workspace (created by ADAMS/Car in
your SHOME directory).

= User - User/site specific.

The databases are defined in private .acar.cfg or common
acar.cfg.

No limitations on number of databases

Each project should have a separate
database

You can only save to one database at a time

Introducing ADAMS/Car

1 private cdb

| sero_forces thl

| assemblies thl
w1 auto_mnf thi

1 autoflex_inputs thl
| bumpstops thl

-1 bushings tal
) dampers thi

__| diffterentials.thl

: 1 drver_controls thi
F-1 drver_data tbl
ce L driver_inputs thi

| driver_knowledge thl

: I drver_loadcases thl

1 drver_roads thl

| flex_bodys thl
1 lnadcases thl
-1 madels thl

j | plot_configs thi
| powentrains thi
1 reboundstops thl
-1 roads thl

.1 shell_graphics.tbl

| springs.thl

| steering_assists thl
-1 subsystems tbl

: | suspension_curves ol
- templates th

- tires thl

| wheel_envelopes thl

21

Configuration File

22

For each user, ADAMS/Car creates a private configuration file,
named .acar.cfg (Notice the first period, which distinguishes it
from the common acar.cfg). This file is located in the users

HOME directory and defines personal settings as:

User mode (expert versus standard)
Personal databases and tables
Default property files

Default writable database

Database search order

Orientation of global reference frame

Other preferences

* ADAMS/Car Configuration File ****+*

! - List of personal environment variables

ENVIRONMENT MDI_ACAR_USERMODE expert
ENVIRONMENT MDI_CAR_RENDER sshaded
ENVIRONMENT MDI_ACAR_VEHICLE_REAR 1,0,0
ENVIRONMENT MDI_ACAR_VEHICLE_LEFT 0,-1,0

I - List of personal database directories

Database name Path of database

DATABASE private D:\private.cdb
DATABASE dbase_1 D:\dbase_1.cdb
DATABASE dbase 2 D:\dbase 2.cdb

DEFAULT WRITE_DB private

I - Desired database search order

DATABASE_ORDERprivate, dbase_1, dbase_2, shared

Introducing ADAMS/Car

Workshop 1—Open and Run an Assembly

XX
X I

X w) This workshop takes about one half hour to complete.

n v
Vil VIV

Problem statement

This workshop introduces you to a couple of typical ADAMS/Car simulations. ADAMS/Car
basically runs either suspension or full-vehicle analyses. Here, you will perform one of each
type: an SO lane change for afull vehicle, and a parallel wheel travel for afront suspension.
You will also add atrace marker to see the movement of particular partsin the model.

Setting Up Your Session
To create a working directory:
= Depending on the platform you' re on, do one of the following:
o OnUNIX:

o Tostart ADAMS/Car in your home directory, open an UNIX shell and type
cd.

o Tocreate adirectory named acar, type mkdir acar.
o Tomove to the new directory, typecd acar.
o OnWindows:

o Onyour hard drive, create a new folder acar. For example, C:\acar.

To start ADAMS/Car:
= Depending on the platform you' re on, do one of the following:

o Atyour UNIX shell prompt, type adams11.
o From the toolbar, select the ADAMS/Car tool §g -

o On Windows, from the Start button, point to Programs, point to ADAMS 11.0, point
to ACAR, and then select ADAMS - Car (view).

The Welcome dialog box appears.

Introducing ADAMS/Car 23

Workshop 1—Open and Run an Assembly...

To toggle to Standard Interface:

= From the Welcome dialog box, select Standard Interface, and then select OK. (Sometimes
the Welcome dialog box contains the option to select a mode, and other times it does
not. This depends on the configuration file.) To run analyses, you must be in the
Standard Interface mode.

= Onceinan ADAMS/Car session, you can toggle between modes by selecting
ADAMS/Car Standard Interface from the Tools menu. If ADAMS/Car Template
Builder islisted, then you are already in the Standard I nterface mode.

To create a new database and set it as the writable database:

1

24

From the Tools menu, point to Database Management, and then select Create Database.
The Create New Database dialog box appears.
In the Database Name text box, enter acar_training.

In the Database Path text box, enter the desired path. The database name is an alias for the
Database Path, which needs to be explicitly defined. For example:

o OnNT: c:\dirl\dir2\acar _training.cdb
o OnUNIX: /dirl/dir2/acar_training.cdb
Select OK.

From the Tools menu, point to Database Management, and then select Set Default Writable,
and make sure the Database Name is set to acar_training (select the down arrow and then
select acar_training).

Select OK.

Introducing ADAMS/Car

Workshop 1—Open and Run an Assembly...

Simulating a full-vehicle assembly

You first open afull-vehicle assembly and then perform a full-vehicle, SO lane-change
analysiswith Driving Machine. Y ou then investigate the results by animating the assembly. The
animation is based on the results of your analysis.

To open a full-vehicle assembly:

1
2

4

From the File menu, point to Open, and then select Assembly.

Right-click the Open Assembly text box, select <shared>\assemblies.thl, and then select
MDI_Demo_Vehicle.asy.

Select OK.
In the Message window, ADAMS/Car informs you when the assembly is ready.

Close the Message window.

To perform an analysis:

1

From the Simulate menu, point to Full-Vehicle Analysis, point to Course Events, and then
select I1SO Lane Change.

In the Output Prefix text box, enter workshopla.
In the Initial Velocity text box, enter 70.

Select OK.

In the Message window, ADAMS/Car informs you about the progress of the analysis and
when the simulation is complete.

Close the Message window.

Introducing ADAMS/Car 25

Workshop 1—Open and Run an Assembly...

To investigate the results:

1

2

From the Review menu, select Animation Controls.

To animate the assembly, select the Play tool ﬂ

Zoom out to see more of the road grid:
= Typealowercasez.
« Hold down the left mouse button, and do either of the following:
o Toenlarge the display of the assembly, or zoom in, move the cursor up.
o Toshrink the display of the assembly, or zoom out, move the cursor down.

= Toexit zoom mode, release the mouse button.

To add a trace marker:

Change No Trace to Trace Marker.
Right-click the Trace Marker text box, point to Marker, and then select Browse.
The Database Navigator appears.

Double-click MDI_Demo_Vehicle, double-click TR_Body, double-click ges_chassis, and then
select cm.

To follow the car in the animation:

1
2
3
4

26

Change Fixed Base to Base Part.

Right-click the Base Part text box, point to Body, and then select Pick.
Move the cursor over the vehicle and select ges_steering_wheel.
Select Play.

The camera should move with the car, as the white line traces the path of the body marker.

Introducing ADAMS/Car

Workshop 1—Open and Run an Assembly...

Simulating a suspension assembly

Y ou simulate a suspension assembly in the same way you simulated the full-vehicle assembly.

To open a suspension assembly:

1
2

4

From the File menu, point to Open, and then select Assembly.

Right-click the Open Assembly text box, select <shared>\assemblies.thl, and then select
mdi_front_vehicle.asy.

Select OK.
In the Message window, ADAMS/Car informs you when the vehicle assembly is ready.

Close the Message window

To perform a parallel wheel travel suspension analysis:

1
2

From the Simulate menu, point to Suspension Analyses, and then select Parallel Wheel Travel.

Set up the analysis:

= Output Prefix: workshoplb
= Number of Steps: 10

= Bump Travel: 100

= Rebound Travel: -100

Select OK.

Close the Message window.

To review the results by animating your assembly:

From the Review menu, select Animation Controls.
Select the Play tool.

Zoom out to see more of the road grid.

Introducing ADAMS/Car 27

Workshop 1—Open and Run an Assembly...

To add a trace marker:

1 Change No Trace to Trace Marker.

2 Right-click the Trace Marker text box, point to Marker, and then select Browse.
The Database Navigator appears.

3 Double-click Front_Suspension, double-click gel_spindle, and then select cm.

4 Select Play.

5 Zoomin to look for the white line that traces the path of the gel_spindle.cm marker.

28 Introducing ADAMS/Car

BAsIc CONCEPTS

In this module, you learn how to create modelsin ADAMS/Car. This module

describes the relationships and differences between templates, subsystems,
and assemblies, which define ADAMS/Car models.

What's in this module:
= Data Hierarchy, 30
= TestRig, 32
= Major and Minor Roles, 33
= Naming Convention, 34

= Workshop 2—Templates versus Subsystems, 35

29

Data Hierarchy

Three levels of files build up a vehicle model (full or half vehicle):

= Template - Defines vehicle sub-assemblies topology (that is, how the parts and joints
fit together in the model, how information is transmitted, and so on). For example, a
template could be a suspension type, which can be defined either as front and/or rear.

= Subsystem - A mechanical model that references atemplate and tailorsiit by
supplying parameters that adjust the template (for example, locations that define part
dimensions and spring stiffness). These models are usually a major system of your
vehicle, for example, front suspension, steering system, and body. The subsystemisa
specific instance of the template in which the user has defined new hardpoint
positions and property files.

» Assembly - A list of subsystemsand a single test rig combined in avehicle or
suspension assembly. A test rig is necessary to provide an actuation, in your model,
for analysis.

Vehicle model

.asy

Subsystem data

.Ssub

Template design

tpl

30 Basic Concepts

Data Hierarchy...

The figure shows how a subsystem is created from a template.

The template holds default geometry and topology. The subsystem
is a specific instance of the template in which the user has
defined new model parameters, such as hardpoint positions,

property files, and mass properties.

Subsystem File Creation

Default MacPherson Strut Template

un_pﬂn_mﬂu hp2_2

g sfipde_stutinertia_frame

v STubfrrme_rear
ddirinee

< rear
eporitet_arm.inelia_frame

e
gyfca_front hpr_drive_shaft_inr Wmm e
-

pper_strutinertia_frame

o il i Bl FPR e _rear
. fes_subframe i Wc@wﬁaam

hpal_drive_st

nal e el

l_subirame_fronf Se1_lower_control_arm kpl _1

Basic Concepts

Specific Mass Properties

New Geometry Points
Specific Property Files

Damper
Spring

MacPherson Subsystem

31

Test Rig

A test rig in ADAMS/Car is the part of the model that imposes
motion on the vehicle. Depending on the model and event,
different test rigs must be used.

A test rig is a special subsystem that is connected to all of the
other subsystems that make up your model, forming an assembly.
The figure on the left shows the suspension test rig alone. With
the suspension subsystems, it would look like the figure on the
right (an assembly).

Suspension test rig assembled with
suspension and steering subsystems

Suspension test rig alone

32 Basic Concepts

Major and Minor Roles

ADAMS/Car uses major and minor roles to create a valid
assembly. Major and minor roles define the location of the
subsystem within the assembly.

Every template (and therefore the subsystem that is created
from that template) has a defined major role: suspension,
steering, body, anti-roll bar, wheel, and so on.

When a subsystem is created, the standard user defines the
subsystem minor role: front, rear, trailer, or any. This enables
the same suspension template to be used for both a front and
rear suspension.

To create a valid suspension assembly, the minimum requirement is
a suspension subsystem and the ADAMS/Car suspension test rig.

To create a valid vehicle assembly, the minimum requirement is a
front suspension, a rear suspension, front and rear wheels, a
body, and a steering subsystem.

Basic Concepts 33

Naming Convention

All ADAMS/Car entities are named after a naming convention.
The first three letters of a given entity identify the type and the
symmetry rule

Examples:
= gel_arm: General_Part_Left_....
= hps_lcs_front: Hard_Point_Single_...
= bkl_mount: Bushing_Kinematic_Left ...
= nsr_main_spring: Non-linear_Spring_Right_...

= pvs_toe_angle: ParameterVariable_Visible_Single_...

34 Basic Concepts

Workshop 2—Templates versus Subsystems

XX
I

w N w) This workshop takes about one half hour to complete.

Vil v
Vi VIV

Problem statement

Understanding the difference between atemplate and a subsystem in ADAMS/Car isapivotal
first step toward using the full power of ADAMS/Car. To illustrate this, consider two people
working side by side, bath on asteering system. L ooking at both computer screens, you seewhat
appears to be the same model. However, one user isworking on atemplate in template-builder
mode, while the other isworking on a subsystem in standard-interface mode. So, what’ s the
difference?

As described before, the difference is what you can do with the models. The topology, or the
way that information and parts are connected, is defined in Template Builder using parameters
(variables), while defining those parameters is available in Standard Interface. Additionally,
you only perform analyses in Standard I nterface, based on a model (specifically, atemplate)
created in Template Builder. A good way to understand this distinction isto create atemplate
file and a subsystem file and compare their contents.

Opening a template file

In this workshop, you create an ASCII template file and compare it to a subsystem file.
Templatefiles can exist either asbinary or text (ASCI|I) files. By default, the templates saved in
ADAMS/Car are binary, so to view the contents, you must save this one astext.

To choose the template-builder mode in ADAMS/Car:
= From the Tools menu, select ADAMS/Car Template Builder.

Note: You can toggle between Template Builder and Standard Interface by pressing the
F9 key.

Basic Concepts 35

Workshop 2—Templates versus Subsystems...

To open the MacPherson suspension template from the shared database:

1 From the File menu, select Open.

2 Right-click the Template Name text box, point to Search, and then select <shared>/
templates.tbl.

3 Double-click _macpherson.tpl.
4 Select OK.

To save the file as a text file:

1 From the File menu, select Save As.

2 Inthe New Template Name text box, enter mac_ascii. (Note that this text box is grayed-out
becauseit is not arequired text box to perform this function. If you do not enter a name,
ADAMS/Car savesthe file with its current name.)

3 Set File Format to ASCII. Y ou need to do this to be able to read the file.
4 Select OK.

ADAMS/Car savesthefilein theacar_training database, which you had set up earlier.

36 Basic Concepts

Workshop 2—Templates versus Subsystems...

To open the file and look at the contents:

1
2
3

From the Tools menu, select Show File (alternatively, you can use atext editor).
Right-click the File Name text box, point to Search, and then select <acar_training>.
Select the directory, templates.thl, and then select _mac_acsii.tpl.

Asyou can seg, the file has all the information to define the model using markers, parts,
communicators, forces, and so on. Take alook at thefileto see what kind of informationis
stored. For example, thefollowing isthe beginning of the definition of theleft lower control
arm:

defaults coordinate_system &
default_coordinate_system = ._mac_ascii.ground

|

part create rigid_body name_and_position &
part_name =._mac_ascii.gel_lower_control_arm &
location = 0.0, -550.0, 150.0 &
orientation = 0.0d, 90.0d, 180.0d

Basic Concepts 37

Workshop 2—Templates versus Subsystems...

38

Opening a subsystem file

Subsystem files can only exist astext (ASCII) files, so you do not need to convert one from
binary. Y ou do not have to specifically create MacPherson suspension subsystem from your
MacPherson template to see the major differences. Instead, you can open one based on a
MacPherson suspension that already exists in the shared database.

To open the file and look at the contents:

1
2
3

From the Tools menu, select Show File (alternatively, you can use atext editor).
Right-click the File Name text box, point to Search, and then select <shared>.

Double-click the directory, subsystems.tbl, and then double-click
MDI_FRONT_SUSPENSION.sub.

Take alook at the file to see what kind of information it stores.

Y ou can see that the top portion of the file looks very similar to the template file, but the
restisvery different, asit resets values of parametersin the template file. Notice that in the
[SUBSYSTEM_HEADER] section, the MacPherson information is referenced for loading
into your ADAMS/Car session with the line: TEMPLATE_NAME = '<shared>/
templates.tbl/_macpherson.tpl'. Also, notice that the subsystem sets the values for the
parametersin the lower control arms:

R G L L e e PART_ASSEMBLY
[PART_ASSEMBLY]

USAGE =’lower_control_arm’

SYMMETRY = ’left/right’

MASS = 5.0911573156

$ Part location is dependent.

$ X,Y,Z location = -6.6666666667, -496.6666666667, 225.0

$ Part orientation is dependent.

$ ZP vector = -0.0652566755, -0.9951643011, -0.0734137599

$ XP vector =-0.9972332421, 0.0676631757, -0.030782389
CM_LOCATION_FROM_PART_X = 0.0

CM_LOCATION_FROM_PART_Y = 0.0
CM_LOCATION_FROM_PART_Z = 0.0

IXX = 26908.978153
Yy = 60577.701004
1ZZ = 33765.551131
IXY =00

1ZX = 3142.3266008533
IYZ = 0.0

Basic Concepts

Workshop 2—Templates versus Subsystems...

Summary

Overall, atemplate defines the structure/topology of a model, and a subsystem redefines
whatever parameters the user wants to create an instance of the template for analyses.

Below isatable that lists the characteristics of the two file types:

Table 1: Comparison of Templates and Subsystems

Characteristic: Templates: Subsystems:
Used to define structure of model Yes No
References the other file (template versus subsystem) No Yes
Can be edited to change topology (for example, the Yes No
point at which force is applied)

Can edit parameters which define the model Yes Yes
Are used to perform ADAM S/Car analyses directly No Yes

An ADAMS/Car template isan ADAMS model built by an expert ADAMS/Car user in the

ADAMS/Car Template Builder. The ADAM S/Car template contains geometric and topol ogical

data. The template file can be stored in ASCI| or binary format.

An ADAM S/Car subsystem s based on an ADAM S/Car template and allows the standard user
to alter the geometric data and some of the topological data of the template. The subsystem file

is stored in ASCII format.

An ADAMS/Car assembly isanumber of ADAM S/Car subsystems assembl ed together with an
ADAMS/Car test rig. Theassembly fileisstoredin ASCII format and isalist of the subsystems

and test rig associated with the assembly

Basic Concepts

39

Workshop 2—Templates versus Subsystems...

40 Basic Concepts

3 CREATING AND ADJUSTING SUBSYSTEMS

In this module, you learn how to create a subsystem from atemplate, as well

as learn which parameters you can adjust in the subsystem.

What's in this module:
= Creating Subsystems, 42
= Adjusting Hardpoints, 43
= Adjusting Parameter Variables, 44
= Adjusting Mass Properties, 45
= Adjusting Springs and Dampers, 46

= Workshop 3—Creating and Adjusting Suspensions, 48

41

Creating Subsystems

42

To create a new subsystem, an existing template must be
available.

Make sure you're in Standard Interface. From the File menu,
point to New, and then select Subsystem. You can only create
subsystems within Standard Interface.

In the New Subsystem dialog box, fill in the following text boxes:
= Subsystem Name
= Minor Role
= Template Name

= Trandation values (optional; lateral shifting cannot be done)

Creating and Adjusting Subsystems

Adjusting Hardpoints

Within a subsystem, you can move hardpoints from their default
values defined in the template. Hardpoints define all key locations
in your model. For more information on hardpoints, see Creating
Hardpoints, 111 on page 109.

In Standard Interface, from the Adjust menu, select Hardpoint.
You have three options:

= Modify - Displays adialog box to select one hardpoint and modify its location.

= Table- Displaysatable with al the hardpoints in that subsystem. Y ou can modify
the location of any hardpoint in the table.

= Info- Displaysadialog box to select entity type and subsystem. Thisis aready
preselected to entity type of hardpoint and to the current subsystem. It will give you
information about every hardpoint in the subsystem.

hpl_Outer_location

Far: ground

—Hardpoint: hpl_Outer_location »
bodify
Info
Delete

Fename

Creating and Adjusting Subsystems 43

Adjusting Parameter Variables

44

Within a subsystem, you can change the value of parameter
variables created in Template Builder. A parameter variable is
simply a variable that is used to store key information in the
template. For example, in the templates, parameter variables
often store the toe and camber angles for a suspension or the
orientation of the spin axis. Note that parameter variables can
also store text.

ADAMS/Car defines some parameter variables automatically,
because they are commonly used for automotive analyses (f);r'
example, toe and camber angles). You can, however, create new
parameter variables.

In Template Builder, you can create parameter variables that are
hidden from standard users. Hidden parameter variables cannot
be modified through Standard Interface. The naming convention
for these variables is ph[lrs]_(name):
ParameterVariable_Hidden_[Left, Right, Single]. Use hidden
variables if you don't want the standard user to change particular
values.

To modify parameter variables, from the Adjust menu, select
Parameter Variable. You have two options:

= Modify - Displays adialog box to select one parameter variable and modify its value.

= Table- Displaysatablewith al parameter variablesin that subsystem, and you can
modify the value of any parameter variablesin the table.

Creating and Adjusting Subsystems

Adjusting Mass Properties

When the template is created, default mass properties are
assigned to the bodies. You can modify these values in Standard
Interface.

To modify mass properties, from the Adjust menu, select General
Part. You have two options:

= Modify - Displays adialog box to select a part and you can specify mass and inertia
values. Y ou can also display this dialog box by right-clicking on the part and
selecting the part name followed by Modify.

« Calculate Mass- ADAMS/Car calculates the new values for mass and inertia based
onthe ADAMS/Car geometry and the density. Note that if the geometry is changed in
Standard I nterface from the template’' s default value, the respective part’s mass will
not automatically change. To change it, simply use the Calculate Mass function again.
If your geometry isimported from a CAD package and is complex, you will have to
enter the mass manually.

Creating and Adjusting Subsystems 45

Adjusting Springs and Dampers

A spring or a damper is created in Template Builder and
references a property file located in a particular folder in your
selected database. In Standard Interface, you can link the spring
or damper to a different property file or you can create a new

property file.

To modify a spring, right-click the spring and select Modify,
which displays the following dialog box:

1 Modify Spring x|
Spring

Property File

I Inztalled Length j

Symmetric

. Specify the path to the property
file to be used for this spring

\ . Calculates the required installed
length for a given preload

More information on
the Curve Manager in
subsequent chapters

46

4 curve Manager

Eile Edit ¥iew Settings Help

Spiing j

Stifiness =

bl =19

Slope
Slope 1
Liraits 100,100

Apply

18000.0

Spring Stiffness
File = <shared>\springs tblundi_0001. spr

10000.0

£000.0

00

Force {newton)

-£000.0

-10000.0

-15000.0

1500

1000 50.0 00 500 1000 150.0
<--- Extansionf-] Distance (rrm) Compression(+] ---=

Creating and Adjusting Subsystems

Adjusting Springs and Dampers...

Within the Modify Spring dialog box, when you right-click the
property file text box, ADAMS/Car takes you to the spring.tbl
directory in the selected database (likewise, when you right-click
the property file text box in the Modify Damper dialog box,
ADAMS/Car takes you to the damper.tbl directory).

Creating and Adjusting Subsystems 47

Workshop 3—Creating and Adjusting Suspensions

48

XX
I

w N w) This workshop takes about one half hour to complete.

Vil v
Vi VIV

Problem statement

In this workshop, you create a new subsystem and learn how to adjust its parameters.

Creating and saving a subsystem

To create a new subsystem:

Changeto ADAMS/Car Standard I nterface.
From the File menu, point to New, and then select Subsystem.

1
2
3 InSubsystem Name text box, enter my_macph.
4 Set Minor Role to rear.

5

Right-click the Template Name text box, point to Search, and then select
<shared>\templates.tbl.

6 Double-click _macpherson.tpl.

ADAMS/Car informs you that the templateis aready in the database.
7 Select Yes.

ADAMS/Car displays the subsystem.

To save the subsystem:

1 From the File menu, point to Save, and then select Subsystem.

The Save Subsystem dialog box appears. Because only one subsystem is openin
ADAMS/Car, by default my_macph is selected. However, if you have more than one
subsystem opened in your session, use the down arrow to select which one you would like
to save. ADAMS/Car savesthe subsystem in the database, acar_training, which was set as
the default database in Setting Up Your Session, on page 23. ADAMS/Car savesthefilein
the subsystems.tbl table.

2 Select OK.

Creating and Adjusting Subsystems

Workshop 3—Creating and Adjusting Suspensions. ..

Modifying a subsystem

To open your subsystem file:

1
2
3

From the Tools menu, select Show File.
Right-click the File Name text box, point to Search, and then select <acar_training>.

Double-click subsystems.thl, and then double-click my_macph.sub.

To take a quick look at the contents of the file:

1

3

Look in the file and note the kind of information it stores. As you can see, parameters for
hardpoints, spring stiffness, and so on, are defined based on the values set when created in
Template Builder. To tailor this subsystem for a different MacPherson suspension, you
change these values in Standard Interface, creating your own instance of the model.

For example, note the thickness of the lower arm geometry, which is 10.6823911464.
Y ou will change this value in Standard Interface, updating it in your subsystem file.

$ ARM_GEOMETRY
[ARM_GEOMETRY]

USAGE =’lower_control_arm’

PART = ’lower_control_arm’

SYMMETRY = ’left/right’
THICKNESS = 10.6823911464

Select Clear, and then close the Info Window Read dialog box.

To change the lower control arm thickness:

1
2
3
4

Right-click either lower control arm (the red triangular area).
Point to Arm: graarm_lower_control_arm, and then select Modify.
Change the Thickness to 33.3.

Select OK.

On your screen, note that ADAMS/Car updates the arm thickness.

To save your subsystem:

1

From the File menu, point to Save, and then select Subsystem. Your subsystem should bein
the dialog box by default.

Select OK, and then select No to prevent ADAMS/Car from creating a backup copy.

Creating and Adjusting Subsystems 49

Workshop 3—Creating and Adjusting Suspensions. ..

To open and look at your file after the change:

1 From the Tools menu, select Show File. Your subsystem should still be entered, so select
OK. Otherwise, right-click and search for <private>\subsystems.tbl\my_macph.sub.

Toward the top, you should see the arm geometry parameters updated for the thickness.

$ ARM_GEOMETRY
[ARM_GEOMETRY]

USAGE = ’lower_control_arm’

PART = ’lower_control_arm’

SYMMETRY = ’left/right’
THICKNESS = 33.3

2 Closethe Information window.

To adjust hardpoints:

1 From the Adjust menu, point to Hardpoint, and select either of the following:
= Modify - Letsyou adjust hardpoints one a atime
= Table - Letsyou adjust al hardpoints.

Alternatively, you could turn icon visibility on, right-click the hardpoint you want to
modify, and then select the hardpoint name followed by Modify.

2 Select Table.
3 Set Display to Both.

To edit the size of the lower control arm:

1 Changeloc_x for either hpl_lca_front or hpr_Ica_front from -200 to -120. Because these
hardpoints are symmetrically parameterized, changing one will automatically change the
other.

2 Select Apply.

3 Changeloc_x for either hpl_Ica_rear or hpr_Ica_rear from 200 to 120. Because these
hardpoints are symmetrically parameterized, changing one will automatically change the
other.

4 Select Apply.

The lower control arm becomes smaller.

50 Creating and Adjusting Subsystems

Workshop 3—Creating and Adjusting Suspensions. ..

To close the hardpoint table:
= Toclosethetable, select OK or Cancel. When you save your subsystem, ADAMS/Car
updates the .sub file with these new hardpoint values.

To adjust parameter variables:

1 From the Adjust menu, point to Parameter Variable, and then select Modify.

2 Toseewhat parameter variables are available in this template, right-click the Parameter
Variable text box, point to Variable, and then select Guesses.

Here, you can seethat one parameter availablefor adjustment is, pvl_toe_angle (toeangle).
Toe angle isthe angle between the longitudinal axis of the vehicle and the line of
intersection of the wheel plane and the road surface. ADAMS/Car reportstoe anglein
degrees. It is positive if the wheel front isrotated in towards the vehicle body.

3 Select pvl_toe_angle. Note that it currently has avalue of 0.0.

4 To seethe effects of toe angle, in the Real text box, enter 2.0.
ADAM S/Car updates both sides because Symmetric is set to yes.

5 Select OK.
For more related information, see the guides, Building Templates in ADAMS/Car and
Running Analysesin ADAMSCar.

To adjust mass properties:

1 From the Adjust menu, point to General Part, and then select Modify.

2 Right-click the General Part text box, point to General Part, point to Guesses, and then select
gel_drive_shaft.

The dialog box fillsin with the relative information.

Note that only the boxes that are not grayed-out are editable. Here' s the mass and inertia
properties:

= Mass 421745
= Ixx: 1.65989
= lyy: 165989
« lzzz 692.82585

Creating and Adjusting Subsystems 51

Workshop 3—Creating and Adjusting Suspensions. ..

52

3

To calculate the mass based on a material in the database, sdlect the

Calculate Mass tool Eil|. Your selected general part is already entered.

Select anew material, such as titanium, and then select OK. Here are the new mass and
inertia properties:

» Mass: 2.39635
= Ixx: 8.0326
= lyy: 8.0326
= lzzz 399.358

To adjust the springs:

1

Right-click the spring, and then select Modify.

Here you can adjust the property file that defines the force versus deflection, aswell as
either the installed length or the amount of preload, since these two quantities are directly
related. The property file <shared>/springs.tbl/mdi_0001.spr isaready inthe Property File
text box.

To see the force-deflection curve, select the Curve Manager tool %

The Curve Manager replaces your Standard I nterface session. Notice that the spring isa
piece-wise linear spring.

To return to ADAMS/Car Standard Interface, from the File menu, select Close.

To change the property file, right-click the Property File text box, point to Search, and then
select <shared>\springs.tb\MDI_125 300.spr.

To see the force-deflection curve, select the Curve Manager tool again. Notice that this
spring isalinear spring.

Return to ADAMS/Car Standard Interface.
Change the installed length to 200.

Select OK.

For a spring definition, see Springs, on page 138.

Creating and Adjusting Subsystems

Workshop 3—Creating and Adjusting Suspensions. ..

To adjust the dampers:

Thisisthe same procedure as for a spring.

1 Right-click the damper, and then select Modify.

Here you can adjust the property file that defines the force versus velocity. The property
file <shared>/dampers.tbl/mdi_0001.dpr is aready in the Property File text box.

2 Toseetheforce-velocity curve, select the Curve Manager tool. Notice that it isanonlinear
curve.

3 Returnto ADAMS/Car Standard Interface.

4 To change the property file, right-click the Property File text box, point to Search, and then
select <shared>\dampers.tbI\MDI_default.dpr.

5 Toseetheforce-velocity curve, select the Curve Manager tool. Notice the new nonlinear
characteristics.

6 Returnto ADAMS/Car Standard Interface.
7 Select OK.

Reminder

All of the modificationsyou just madein Standard I nterface only change your subsystem. There
are many waysto perform these modifications. Note that the adjustments you make will change
your subsystem file only after you saveit.

Creating and Adjusting Subsystems 53

Workshop 3—Creating and Adjusting Suspensions. ..

54 Creating and Adjusting Subsystems

4 USING THE CURVE MANAGER

Y ou use the Curve Manager to create and edit data in property files, as
described in this module.

What's in this module:
= Property File Types, 56
= Creating Property Files, 57
= Modifying an Existing Property File, 60
= Plot versus Table, 61

= Workshop 4—Modifying Springs with the Curve Manager, 62

55

Property File Types

The Curve Manager supports the following curve types:
= Bushing
= Bumpstop
= Reboundstop
= Spring
= Damper

= Wheel envelope

The functionality of the Curve Manager changes, depending on the
kind of property file being used.

The Curve Manager has two modes:

= Plotting - In this mode you can build a curve by specifying functions that define the
curve.

For example, you can define a spring curve with arate of 20 N/mm with 25 points
between —100 and 100 mm.

= Table- Inthismode you can specify each point in adatatable.

For example, for the same spring curve made in the plotting mode, you would have to
typein the x-y numbers for all 25 points.

56 Using the Curve Manager

Creating Property Files

To create a new property file, in either Standard Interface or
Template Builder, from the Tools menu, select Curve Manager.

To set up the Curve Manager in the appropriate mode, select a
new file and specify what type of property file you want to
create.

Types of property files:

Bushing - Specify all six curvesthat define 3-D trandational and rotational stiffness.
Unlike aBUSHING statement, these curves can be nonlinear.

Bumpstop - A stiffness curve
Reboundstop - A stiffness curve

Spring - A stiffness curve and a free length (for information on springs, see Springs
on page 138)

Damper - A damping curve

Wheel envelope - Input boundaries:
o Steer input (Iength or angle)

o Whedl interior and boundary

o Steer interior and boundary

Features in the Curve Manager:

Fit the curve on the plot
Zoom apart of the curve
Curve math

Vertical hotpoints

Toggle memory curve

Using the Curve Manager 57

Creating Property Files...

58

Curve Math @

Slope - Specify arate, limits, and number of points or number of segments, which is
the same as number of points minus 1.

Offset - Offsets the curve by the value you specify.

Absolute value - No parameters, takes the absolute value of the curve.
Negate - Inverts the curve.

Zero - Offsatsthe curve so it starts from zero.

Y mirror - Mirrorsthey values around the middle point.

XY mirror - Mirrorsthe x and y values, so that the curve goes through the same
value for both the x and y axis.

Copy x->y - Makes the y value the same as the x.

Function - Specify afunction, limits and number of points or segments, and you’ll
get a curve of the function you specified.

Inter polate - Uses one of the following interpolation methods and creates the number
of points you specify:

Akima Cspline
Linear Notaknot
Cubic Hermite

Step - Specify start and end values, and the y value for those start and end points.
Scale - Scales the curve by the value you specify.
Ramp - Specify start and end values, and the y value for those start and end points.

Expand - Stretchesthe x start and end points.

Using the Curve Manager

Creating Property Files...

= Sine- Start and end points for x and y values, when the sweep starts, minimum and
maximum amplitude, frequency and the number of points or segments.

= Bushing - All six curvesfor trandational and rotational stiffness, and the damping
values for each direction and for translation and rotation. Y ou have the option of
specifying a percentage value of the stiffness instead of specifying an absolute
damping value.

= Whesel envelope - The curve math is not available.

Using the Curve Manager

59

Modifying an Existing Property File

To modify an existing property file, you can do either of the
following:

= Usethe Tools menuin ADAMS/Car Standard Interface or Template Builder to open
the Curve Manager, as you would to create a property file. Here, open the property
file you want to edit and make your changes.

= Useamodify dialog box to open the Curve Manager, and the selected curve will
automatically open for editing.

1 Modify Spring x|

Spring I

Froperty File I
I Installed Length jl

Summetric % yes O no

@ | 0k, | Apply | Cancel

kf Curve Manager tool

60 Using the Curve Manager

Plot versus Table

To switch between plot and table format, use the View command
on the main menu and select either Plot or Table, depending on
which mode you want to view. You can only close the Curve
Manager, that is, return to Standard Interface or Template
Builder, from the plot mode. If you are in table mode, go to plot
mode and then select File -> Close.

When you finish editing the property file, you can save it.
ADAMS/Car saves it to the corresponding table directory in the
default writable database. For example, ADAMS/CAR saves a
spring property file to the table directory spring.tbl, in the
database.

To check what the default writable database is:
= From the Tools menu, point to Database Management, and then select Database Info.
= Seethe subtitle in the plot, which shows the complete path to the property file.

In the Curve Manager, to change
the symbols that represent the data d Modiy Curve Appearance 2
points, from the Settings menu, Symbals | o -
select Appearance. [

Interpolation Points

OF. | Apply | Cancel |

Using the Curve Manager 61

Workshop 4—Modifying Springs with the Curve Manager

62

IX

XX
I

w) This workshop takes about one half hour to complete.

v

Vi VIV

In this workshop, you use the Curve Manager to modify springsin a suspension analysis.

Setting up the model

To set up your model:

1
2

Open the mdi_front_vehicle assembly.

Run an opposite wheel travel analysis with Output Prefix named baseline.

Modifying the spring

To modify the spring:

1
2

3

Right-click the spring and select Modify.

Select the Curve Manager tool.

Right-click the Curve Math toolstack (=, and then select the Scale tool A4,
In the Scale Value text box, enter 1.5.
Select Apply.

Using the Curve Manager

Workshop 4—Modifying Springs with the Curve Manager...

Saving the spring property file
To save the spring property file:
1 From the File menu, select Save As.

2 Namethefile my_spring.spr.
3 Select OK.

ADAMS/Car savesthe filein your default writable database.

4 From the File menu, select Close.

ADAMS/Car displays a dialog box that asks if you want to reference this spring property
filein your model.

5 Select Yes.
6 Inthe Modify Spring dialog box, select OK.

Running an analysis
To run an analysis:

1 Runawheel travel analysisidentical to the analysis named baseline, with Output Prefix
named new_spring.

2 In ADAMS/PostProcessor, compare the results of dive.

Using the Curve Manager 63

Workshop 4—Modifying Springs with the Curve Manager. ..

64 Using the Curve Manager

5 CREATING AND SIMULATING SUSPENSIONS

In this module, you learn how to create a suspension assembly in
ADAMS/Car. Y ou also learn about the availabl e suspension analyses and how
to submit them.

What's in this module:

= Creating Suspension Assemblies, 66
= Half-Vehicle Analyses, 67

= Suspension Parameters, 68

= Creating Loadcases, 69

= Warning Messages, 70

= Files Produced by Analyses, 71

= Workshop 5—Running Suspension Analyses, 72

65

Creating Suspension Assemblies

66

An assembly consists of a single test rig and one or more
subsystems (a test rig by itself is just a specialized subsystem).

You create suspension assemblies in Standard Interface: from the
File menu, point to New, and then select Suspension Assembly. In
the dialog box, specify all the subsystems to be included in the
assembly, as well as the test rig.

If you use subsystems created from new templates, you need to
make sure the communicators match up. Beforehand, in the
template-builder mode, you can test the communicators to make
sure they match with other templates (communicators are
described in more detail in Communicators on page 145). ADAMS/Car
displays warning messages in the Message window for
communicators that are not matched when creating an assembly.

The picture below shows a suspension assembly containing a
suspension and steering subsystem, and test rig.

Because simulations are activated by test rigs, to perform a
simulation, you must use an assembly.

Creating and Simulating Suspensions

Half-Vehicle Analyses

You can perform the following types of suspension analyses in
ADAMS/Car:

Parallel wheel travel - Both wheels move up in unison.

Opposite wheel travel - One wheel up, one down.

Single wheel travel - One wheel fixed, while other moves.

Steering - Motion applied to steering wheel or rack.

Static load - Applied at specified locations (wheel center, tire contact patch).
External files:

o Loadcase - Essentially aselection of previous events.

o Whed envelope - A parale wheel travel while moving the steering to get the
volume the wheels take up in all exercises.

When performing a suspension analysis, ADAMS/Car uses the
first second to bring the wheel centers to the lowest position, and
then uses as many seconds as you specify steps, to move the
suspension to the upper position.

For more information, see the guide, Running Analyses in
ADAMS/Car.

Creating and Simulating Suspensions

67

Suspension Parameters

Some of the default request outputs need information that is not
available in the model. Therefore, you must supply this additional
information. This information has no bearing on the outcome of
the simulation, as it only affects some of the user-defined
results (for example, the roll center, among others).

ADAMS/Car stores the input in an array named Suspension
Parameters, which you can find in the Standard Interface under
Simulate -> Suspension Analysis -> Suspension Parameters.

The values you must supply are:
» Loaded tireradius
» Tiredtiffness
= Sprung mass
=« CG height
» Wheelbase
» Driveratio

= Brakeratio

68 Creating and Simulating Suspensions

Creating Loadcases

A loadcase is an ASCIT file containing all necessary information to
run a simulation. It is basically a way of scripting suspension
simulations with these five analysis types:

Parallel wheel travel
Opposite wheel travel
Single wheel travel
Steering

Static load

When running a loadcase, ADAMS/Car searches for the particular
loadcase file, stored in the database. You can call many
loadcases, and ADAMS/Car will run them one at a time.

You can create a loadcase file by selecting Simulate -> Suspension
Analysis -> Create Loadcase. Then, select the type of analysis
you want to run, and specify the relevant data.

Creating and Simulating Suspensions 69

Warning Messages

70

When you create an assembly, you will sometimes see warning
messages. For example, suppose you are creating a front
MacPherson suspension assembly without a steering or body
subsystem. Because steering and body parts are not specified in
the test rig or another subsystem, certain communicators are
attached to ground or not attached to anything. The Message
window displays the following:

Creating the suspension assembly: ‘'macph_assy'...
Moving the rear suspension subsystem: 'my_macph'...
Assembling subsystems...

Assigning communicators...

WARNING: The following input communicators were not assigned during assembly:
my_macph.cil_tierod_to_steering (attached to ground)
my_macph.cir_tierod_to_steering (attached to ground)
my_macph.cis_subframe_to_body (attached to ground)
my_macph.cil_strut_to_body (attached to ground)
my_macph.cir_strut_to_body (attached to ground)
my_macph.cil_ARB_pickup
my_macph.cir_ARB_pickup
testrig.cis_steering_wheel_joint
testrig.cis_steering_rack_joint
testrig.cis_leaf adjustment_steps
testrig.cis_powertrain_to_body (attached to ground)

Assignment of communicators completed.

Assembly of subsystems completed.

Suspension assembly ready.

The models in the shared car database contain all the
communicators that could possibly be used by other systems, and
in many cases, not all communicators are used. However, be sure
to check out which ones aren't being connected to see if it makes
sense. Here, most of them could potentially be connected to the
body, or to some other subsystem you currently don't care about
in your analysis. By default, if ADAMS/Car cannot find the
matching communicator, it attaches it to ground, which, in this
case, is fine. So, you usually aren't concerned about it unless you
see a communicator that should be used, but isn't.

Creating and Simulating Suspensions

Files Produced by Analyses

It's important to remember that all vertical products, including
ADAMS/Car, are simply preprocessors for ADAMS/Solver. This
means that the simcrly produce the .adm file (ADAMS/Solver
data, the model) and the .acf file (ADAMS/Solver commands).
These files are created in the working directory (File -> Select
Directory).

The output files produced include message, request, results,
graphics, and output files. ADAMS/Car may also produce a .dcf
and .dcd file, as described in Driving Machine on page 83.

When you import the analysis requests file (.req) in
ADAMS/PostProcessor, ADAMS/Car also produces a special file,
named the name file (.nam), which contains the name associated
with every request in the interface.

You can use the .adm, .acf, and .nam files to submit an analysis
outside of the ADAMS/Car graphical interface.

Creating and Simulating Suspensions 71

Workshop 5—Running Suspension Analyses

XX
I

X n) This workshop takes about one hour to complete.

Vil v
Vi VIV

Go through Suspension Analysis Tutorial in the guide, Getting Sarted Using ADAMSCar.

72 Creating and Simulating Suspensions

6 CREATING AND SIMULATING FuLL VEHICLES

In this module, you learn how to create full-vehicle assembliesin
ADAMS/Car. Y ou also learn about theavailable full-vehicle analysesand how
to submit them.

What's in this module:

= Creating Full-Vehicle Assemblies, 74
= Shifting Subsystems, 75

= Updating Subsystems, 76

= Updating Assemblies, 77

= Full-Vehicle Analyses, 78

= Adjusting Mass Automatically, 80

= Workshop 6—Running Full-Vehicle Analyses, 81

73

Creating Full-Vehicle Assemblies

To create a full-vehicle assembly, go to File -> New -> Full
Vehicle. This dialog box requires a list of all subsystems that
make up your assembly. The subsystem necessary are body, front
and rear suspension, zr'on'r and rear tires, steering system, and a
test rig.

All the analyses currently available are based on the Driving
Machine. Therefore, to perform open-loop, closed-loop, and
quasi-static analyses, you must select the
.__MDI_SDI_TESTRIG in your assemblies. The only analysis that
is not based on the Driving Machine is the data-driven analysis.
It uses the .___MDI_Driver_TESTRIG.

You can include other subsystems in the full-vehicle assembly by
checking Other Subsystem. The location and connectivity of these
subsystems depend on the how the subsystems and the
c:‘rr;mu;icafor-s are defined, and whether or not the template is
shifted.

74 Creating and Simulating Full Vehicles

Shifting Subsystems

To shift a subsystem, in the Standard Interface, go to

Adjust -> Shift. Here you have the choice of shifting the
subsystem fore/aft and up/down. Fore/aft moves the subsystem
along the global x-axis. Up/down moves it along the global z-axis.

After shifting the rear suspension aft and up

Creating and Simulating Full Vehicles 75

Updating Subsystems

76

Occasionally, you may want to change a subsystem that is used
within your assembly, and see the changes take effect in your
assembly. In other words, you want to edit the subsystem file,
and see the changes alter your assembly file. To do this, go to
File -> Update -> Subsystem, and then select the subsystem.
This option prevents you from closing the assembly and reopening
it with the modified subsystem to see the change.

IMPORTANT: Note that you must save the changed subsystem in
the database, to be loaded into the assembly. Also, the update

subsystem changes do not affect topology: they only update the

parameters, which can be adjusted at 'r%\e subsystem level.

Creating and Simulating Full Vehicles

Updating Assemblies

Similarly to updating subsystems, you can update your assembly.
To do so, go to File -> Update -> Assembly, and then select the
assembly. This option prevents you from closing the assembly and
reopening it with the modified subsystems by reloading
information from the saved subsystems that the assembly
references.

Creating and Simulating Full Vehicles 77

Full-Vehicle Analyses

As stated Er'eviously, all the analyses currently available are
based on the Driving Machine. Therefore, to perform open-loop,
closed-loop, and quasi-static analyses, you must select the
.__MDI_SDI_TESTRIG in your assemblies. The only analysis that
is not based on the Driving Machine is the data-driven analysis.
It uses the .___MDI_Driver_TESTRIG.

The following is a list of the types of events that are available in
ADAMS/Car:

= OPEN LOOP EVENTS
o Drift
o Fish Hook (new to v11.0)
o Impulse Steer
o Ramp Steer
o Single Lane Change
o Step Steer
o Swept Sine Steer
= CORNERING EVENTS
o Breaking-In-Turn
o Power-Off Cornering
o Constant Radius Cornering
o Cornering with Steering Release (new to v11.0)
o Lift-Off Turn-In (new to v11.0)
o Power-Off Cornering (new to v11.0)

78 Creating and Simulating Full Vehicles

Full-Vehicle Analyses...

STRAIGHT-LINE BEHAVIOR

o Acceleration and Braking (Improved for v11.0)
o Power-Off Straight-line (New to v11.0)
COURSE EVENTS

o 1SO Lane Change

DCFDRIVEN

QUASI-STATIC MANEUVERS

o Constant Radius Cornering

o Constant Velocity Cornering

o Force Moment Method

DATA DRIVEN (only workswith _ MDI_Driver_testrig)
ADAMS/DRIVER

For details on these analyses, see the guide, Running Analyses in
ADAMS/Car, or use the Dialog Box Help (F1).

On top of the dynamic events, ADAMS/Car offers a set of quasi-
static events, including:

Constant Radius Cornering
Constant Velocity Cornering

Force-moment method

These are available using either MDI_DRIVER_TESTRIG or
MDI_SDI_TESTRIG test rig.

Creating and Simulating Full Vehicles 79

Adjusting Mass Automatically

80

In ADAMS/Car you can adjust the mass properties of an
assembled model. To adjust the aggregate mass, enter the
desired mass, the desired centroidal inertias, and the desired
center-of-mass location, all relative to a marker. You also select
a part that ADAMS/Car modifies to match the desired mass
properties. Therefore, the mass properties of the virtual vehicle
match those of the real vehicle.

To adjust the mass properties, go to Simulation -> Full Vehicle
Analysis -> Automatic Mass Adjustment.

Creating and Simulating Full Vehicles

Workshop 6—Running Full-Vehicle Analyses

XX
I

X n) This workshop takes about one hour to complete.

Vil v
Vi VIV

Go through Full-Vehicle Analysis Tutorial in the guide, Getting Started Using ADAMS/Car.

Creating and Simulating Full Vehicles

8l

Workshop 6—Running Full-Vehicle Analyses...

82 Creating and Simulating Full Vehicles

7 DRIVING MACHINE

TheDriving Machinedrivesyour virtual vehicleaccording to your instructions
much like atest driver would drive an actual vehicle.

What's in this module:
= Standard Driver Interface (SDI) and Driving Machine, 84
= Why Use SDI?, 85
= Creating Inputs for SDI, 86
= Creating .dcf and .dcd Files, 88

= Workshop 7—Editing .dcf and .dcd Files, 98

83

Standard Driver Interface (SDI) and Driving Machine

Standard Driver Interface (SDI) is an architecture used by
ADAMS/Car to perform driving analyses using inputs to drive your
virtual vehicle. The manifestation of this architecture is a
function in ADAMS/Car called Driving Machine. This interface
controls five different channels: steering, throttle, clutch, gear,
and brake. This enables you to easily recreate any physical test
procedure or replay actual driving events from measured data.

Driving Machine provides a seamless interface to three vehicle
controllers:

= Open-loop control - The open-loop controller can use either constant values or
function expressions to drive the vehicle. No feedback is passed back to the
controller.

= Machine control - The machine controller is a closed-loop controller that controls
the vehicle by using the vehicle states.

= Human control - The human controller is, like the machine controller, a closed-loop
controller, but it al'so has learning capabilities.

To help you calculate the control signals, the Driving Machine
passes vehicle states such as position, velocity, and acceleration
to Jlour driver controller. It also provides a means for defining
and passing sets of command signals, feedback signals, and
parameters for each of the five control signals.

84 Driving Machine

Why Use SDI?

No need to create controllers or to struggle setting gains.

Shorten simulation times if conditions are achieved, or abort early
if conditions are not met.

Closed-loop control for some driver signals can be combined with
open-loop control for others (for example, closed-loop for
steering and open-loop for throttle).

Enables users to easily recreate any physical test procedure or
replay actual driving events from measured data.

Vehicle event scripting with mini-maneuvers allows easy
construction of new vehicle tests.

Automatic transmission in the powertrain model.

SDI capability enables absolute control of vehicle and definition
of closed-loop events by target condition (example: braking at
0.56). So, you can build any event using the Driving Machine.

Driving Machine 85

Creating Inputs for SDI

86

Two file types are used as input for SDI-based events: driver
control files (.dcf) and driver control data files (.dcd) files.

Driver control file (.dcf) - Controls the event and contains alist of mini-maneuvers
that allows you to script the simulation.

Driver control data file (.dcd) - Contains input data used in the driver control file.
Thisfileis necessary only if it isreferenced in the .dcf file.

Driver Control File

A driver control fileisatiem orbit ASCII filethat you can modify in atext editor. It allowsyou
toreferenceexternal datain a.dcd fileto drive the vehicle, such as steering wheel displacement,
vehicle acceleration, or other inputs. The driver control file requires four data blocks:

MDI header - Identifiesthe file as a.dcf file and provides version information.

Units - Sets the units of the parameters in the .dcf file. These units can be different
from those used in the model.

Experiment - Specifies someinitial conditions for the simulation and alist of mini-
maneuvers that makes up the complete experiment or event.

Mini-maneuver - Specifies how the vehicle steering, throttle, brake, gear, and clutch
are controlled for each maneuver, which are basically instructions for the vehicle.
These names must match the names specified in the experiment block.

Driver Control File

MDI header
Units
Controlsblock:

o Closed-loop - Specifies the relative data according to input parameters. For
example, X, y coordinates for avehicle path.

o Open-loop - Includes data for time versus the five input channels: steer, throttle,
brake, gear, and clutch.

Driving Machine

Creating Inputs for SDI...

The following illustration shows the Driving Machine data flow:

Driving Machine

ADAMS/Car Interface

Driver
control
data file
(.dcd)

:

:

:

Driver ADAMS ADAMS
control command dataset
file file file
(.dcf) (.acf) (.adm)
ADAMS/Car Solver
——— .msg
—>] .req
— res —— Output files
> .gra
> .out

87

Creating .dcf and .dcd Files

To create a .dcf or .dcd file you need a text editor. The
preferred way is to copy a .dcf file from the shared database,
and make the necessary changes to the data blocks. The following
describes changes to the blocks:

= MDI header block - This does not require much editing: just make sure you start
with a.dcf file that was created for the same version of ADAMS/Car that you intend
to use.

= Unitsblock - The units should be those of the datain your .dcf file, which can be
different from you assembly units.

= Experiment block - As seen below:

$ EXPERIMENT
[EXPERIMENT]

EXPERIMENT NAME = ‘Constant Radius Cornering’

INITIAL_SPEED = 16.666

INITIAL_GEAR =3

(mini_maneuver pri_end pri_value abort_time step_size
‘STEADY_STATE’' ‘VELOCITY’ 27.777 18.800 0.05

Here you define some initial settings and specify the list of mini-
maneuvers. Note that INITIAL_SPEED and INITIAL_GEAR are
the speed and gear, respectively, that ADAMS/Car will apply at
the first time step. Last in the experiment data block is the list
of the mini-maneuvers you want for the simulation. In this
example, there is only one maneuver to run. The mini-maneuver
names listed must match the names for the mini-maneuver block.

88 Driving Machine

Creating .dcf and .dcd Files...

For every mini-maneuver, you must specify the following:

= Pri_end - Primary end condition, which is the state you want to control the
termination. This could be one of the following:

o TIME
o DISTANCE
o VELOCITY
o ACCELERATION
= Pri_value- Thevaueto achieve for the primary end condition, +/- 0.2%.

= Abort_time- Thetime when that mini-maneuver will be terminated, regardlessif the
primary end condition has been achieved or not.

= Step_size- The solver output step size.

(Note that new to v11.0, multiple end conditions can be specified, when the .dcf File
Version is 2.0. These end conditions can be for time, distance, velocity, acceleration
(longitudinal and lateral), and yaw (accel eration, displacement, and velocity). For
details, see the guide, Running Analysesin ADAMSCar.

For every mini-maneuver you specify in the experiment block, you
must specify a separate mini-maneuver sub-block, that might look
as shown next:

$ STEADY_STATE
[STEADY_STATE]

(STEERING) /’\
ACTUATOR_TYPE = ‘ROTATION’

this is the name of the mini-maneuver;

METHOD = ‘MACHINE’ . :
(THROTTLE) it must match the name in the

METHOD = ‘MACHINE’ experiment block
(BREAKING)

METHOD = ‘MACHINE’

Driving Machine 89

Creating .dcf and .dcd Files...

90

(GEAR)
METHOD = ‘OPEN’
MODE = ‘ABSOLUTE’
CONTROL_TYPE = ‘CONSTANT’
CONTROL_VALUE =3

(CLUTCH)
METHOD = ‘OPEN’
MODE = ‘ABSOLUTE’
CONTROL_TYPE = ‘CONSTANT’
CONTROL_VALUE =0

(MACHINE_CONTROL)
STEERING_CONTROL = ‘SKIDPAD’
RADIUS =80.0
TURN_ENTRY_DISTANCE = 30.0

TURN_DIRECTION ='LEFT’
SPEED_CONTROL =*VEL_POLYNOMIAL'
VELOCITY = 16.666
ACCELERATION =.855

JERK =0.0

START_TIME =3.800

Here, the mini-maneuver name (STEADY_STATE) is specified
between the first set of square brackets, and must match the
name listed in the experiment block. Every mini-maneuver
sub-block requires five attributes: steering, throttle, braking,
gear, and clutch, which are specified with parentheses (Here,
(MACHINE_CONTROL) is an extra block to perform this
function).

Driving Machine

Creating .dcf and .dcd Files...

Within the steering, throttle, br'aking, gear, and clutch, various
parameters are assigned. Notes on these parameters are listed
next:

ACTUATOR_TYPE
Allows choice of actuator input.

= ROTATION - Applies an angular motion to the steering column joint.
= TRANS - Appliesatranslational motion to the steering rack joint.
= FORCE - Appliesaforceto the steering rack.

= TORQUE - Applies atorque to the steering wheel.

METHOD
Specifies the control method to use.

= OPEN_CONTROL - Must be defined as a function of time. Must define the
CONTROL_TYPE argument.

= MACHINE_CONTROL - Usesthe Driving Machine controllersto drive the vehicle.

= HUMAN_CONTROL - Uses ADAMS/Driver to control the vehicle.

MODE

Specifies whether to carry signals on from previous maneuvers or

set a new value.

» RELATIVE - Maintains the last signal from the previous mini-maneuver as the initial

input for the next mini-maneuver.

= ABSOLUTE - Forcestheinitia input to be the value specified, which can cause
discontinuitiesin signals.

Driving Machine

91

Creating .dcf and .dcd Files...

92

CONTROL_TYPE

For steering, throttle, brake, clutch, and gear, you can define the control_type as.

0

0

O

Constant
Step

Ramp
Impulse
Sine
Swept_sine

Data driven

Driving Machine

Creating .dcf and .dcd Files...

For every control type MACHINE CONTROL, you must include a

separate data block.

STEERING

FILE - Supply a.dcd file.
STRAIGHT - Controlsthe vehicle to go straight from theinitial position.

SKIDPAD - Controlsthe vehicle to drive on a skidpad. The following parameters
need to be defined as well.

TURN_DIRECTION - Left or right.
TURN_ENTRY_DISTANCE - Distance from start to turn.
RADIUS - Radius of skidpad.

MAINTAIN - Maintainstheinitial speed of the vehicle. The Driving Machine will
control the throttle to maintain theinitial speed.

SPEED_CONTROL

FILE - Supply a.dcd file.

LAT_ACCEL - Controlsthe lateral acceleration.
LAT_ACCEL_TARGET - Lateral acceleration target.
MAX_ENGINE_SPEED - When it s time to change gear.
MIN_ENGINE_SPEED - When it’ stime to shift down.

Driving Machine

93

Creating .dcf and .dcd Files...

VEL_POLYNOMIAL
Defines avelocity curve.
= VELOCITY - Velocity
= ACCELERATION - Acceleration
= JERK - Square of acceleration
= START_TIME - The time when we hit the throttle.
« Thefollowing equation is used:
IF (Time < START_TIME):
SPEED = VELOCITY
IF (Time > START_TIME):

SPEED = VELOCITY + ACCELERATION*(TIME — START_TIME)+1/2*
JERK(TIME-START_TIME)**2

94 Driving Machine

Creating .dcf and .dcd Files...

For HUMAN control, ADAMS/Driver is required with a separate
license. You cannot switch from an open-loop controlled mini-
maneuver to a human mini-maneuver, but you can switch from
human to open. ADAMS/Driver approximates the behavior of a
human driver and is capable of learning and adapting to the
characteristics of the vehicle.

Arguments used when using HUMAN control:

= DRIVER_INPUT_FILE = STRING <filename.din> - Thisfile specifies the option that
ADAMS/Driver usesto control the vehicle.

= DRIVER_ROAD_FILE = STRING <filename.drd> - Thisfile specifiesthe road as a set
of X, y coordinates and lane widths.

= START_DRIVER_ACTIVITIES = VALUE <time> - Enter the time after the beginning
of the mini-maneuver when you want ADAMS/Driver to start controlling the vehicle.
If the mini-maneuver isthe first in the experiment (simulation), this time must be
greater than zero.

= LEARNING_ACTIVITIES = ‘LATERAL_DYNAMICS' ||
‘LONGITUDINAL_DYNAMICS' || ‘BASIC_DYNAMICS' || ‘LIMIT_HANDLING' ||
‘NONE’

Driving Machine 95

Creating .dcf and .dcd Files...

96

ADAMS/Driver has the ability to learn and adapt to a particular
vehicle's characteristics. Using LEARNING_ACTIVITIES you
specify the kind of learning ADAMS/Driver does. ADAMS/Driver
stores what it learns about your vehicle in the output knowledge
file for use in subsequent simulations.

= LATERAL_DYNAMICS - Learns and adapts to the vehicl€' s lateral dynamicsonly.

= LONGITUDINAL_DYNAMICS - Learns and adapts to the vehicle s longitudinal
dynamics only.

= BASIC_DYNAMICS - Learns and adapts to both the vehicle s lateral and longitudinal
dynamics.

= LIMIT_HANDLING - ADAMS/Driver learns and adaptsto the vehicle' slimit handling
characteristics. To learn the limit handling characteristics of avehicle,
ADAMS/Driver attemptsto drive the vehicle as quickly as possible.

= NONE - ADAMS/Car does not record any of the information resulting from the mini-
maneuver.

REMEMBER = 'YES' || :NO’

Select an optionfor REMEMBER. Whenyou select YES, ADAM S/Driver readsthe knowledge
file you specify using the KNOWL_INPUT_FILE argument. Each time you run
ADAMS/Driver, it creates aknowledge file, KNOWL_OUTPUT _FILE, to storewhat it learns
about the vehicle' s characteristics.

For every control type HUMAN CONTROL, you must include a
separate data block:

(HUMAN_CONTROL)

DRIVER_INPUT_FILE ‘<shared>/mdi_driver_001.din’
DRIVER_ROAD_FILE ‘<shared>/MDI_track.drd’
START_DRIVER_ACTIVITIES= 0.5

LEARNING_ACTIVITIES ‘LIMIT_HANDLING’
REMEMBER ‘YES’

KNOWL_INPUT_FILE ‘limit_handling.kno’
KNOWL_OUTPUT_FILE ‘limit_handling1.kno’
INITIAL_GEAR 3

Driving Machine

Creating .dcf and .dcd Files...

The following table summarizes the closed-loop data that a .dcd
file may contain. The columns represent speed-control options
from the driver parameters array. The rows represent the
steering control options from the driver parameters array. The
intersections give the data contained in the .dcd file and, thus,
the data input to the funnel to produce {x,y,vt} as needed by
Driver-Lite.

SPEED_CONTROL none lon_vel lon_acc lat_acc path
STEERING_CONTROL (p1=0) (p1=1) (p1=2) (p1=3)
NOT {(distance {(distanceor NOT VALID NOT
none VALID or time), time), VALID
lon_vel} lon_acc}

{distance, {(distance {(distanceor {(distanceor NOT

curvature curvature} or time), time), time), curvature, VALID
(p1=0) curvature, curvature, lat_acc}

lon_vel} lon_acc}
path {X, y} {X, Y, Vt} {X, Y, {X, Y, lat_a:c} {X1 Y,
(p1=1) lon_acc} time}

NOT {distanceor {distanceor NOT VALID NOT

lat_acc VALID time, time, VALID
(P1=2) lat_acc, lat_acc,

lon_vel} lon_acc}

For example, if STEERING_CONTROL = 'path’, and
SPEED_CONTROL = 'none’, then in the (DATA) block of your .dcd
file, you need a block of {X Y} data to define the path of your
vehicle. (The pl parameters are the values passed to the SDI
arrays in the .adm file.)

Driving Machine 97

Workshop 7—Editing .dcf and .dcd Files

XX
I

w N n) This workshop takes about one hour to complete.

\4U v
Vi VIV

Problem statement

In this workshop, you edit a .dcf and .dcd file from existing filesin the default ADAM S/Car
shared database.

Example .dcf file

$ MDI_HEADER
[MDI_HEADER]

FILE_NAME =iso_lane_change.dcf

FILE_TYPE ='dcf

FILE_VERSION =1.0

FILE_FORMAT ='ASCII

(COMMENTS)

{comment_string}

'Example DCF file for Closed Loop ISO-Lane Change’

$ UNITS
[UNITS]

LENGTH = ’'meters’

FORCE = ’'newton’

ANGLE = 'radians’

MASS = kg’

TIME = ’'secC’

$ EXPERIMENT
[EXPERIMENT]

EXPERIMENT_NAME ="ISO-Lane Change’

INITIAL_VELOCITY = 16.667

INITIAL_ GEAR =3

{mini_manuever pri_end pri_value abort_time step_size}
'LANE_CHANGE' 'TIME’ 12.0 12.0 0.05

98 Driving Machine

Workshop 7—Editing .dcf and .dcd Files...

$ LANE_CHANGE
[LANE_CHANGE]

(STEERING)

ACTUATOR_TYPE = 'ROTATION’
METHOD = 'MACHINE’
(THROTTLE)

METHOD = 'MACHINE’
(BRAKING)

ACTUATOR_TYPE = 'FORCFE’
METHOD = 'MACHINE’
(GEAR)

METHOD = 'OPEN’

MODE = 'ABSOLUTFE’
CONTROL_TYPE = 'CONSTANT
CONTROL_VALUE = 3

(CLUTCH)

METHOD = 'OPEN’

MODE = 'ABSOLUTFE’
CONTROL_TYPE = 'CONSTANT
CONTROL_VALUE = 0
(MACHINE_CONTROL)
STEERING_CONTROL = 'FILE’
DCD_FILE = ’iso_lane_change.dcd’
SPEED_CONTROL = 'VEL_POLYNOMIAL’
VELOCITY = 16.667
ACCELERATION = 00

JERK = 0.0
TRANSITION_TIME = 0.0
MIN_ENGINE_SPEED = 750
MAX_ENGINE_SPEED = 6500

Hereisthe supporting .dcd file for the SO lane change:

[MDI_HEADER]

FILE_NAME =iso_lane_change.dcd
FILE_ TYPE ='dcd’

FILE_VERSION =1.0

FILE_FORMAT ='ASCII

(COMMENTS)

{comment_string}

'Example DCD file of ISO-Lane Change Path’

Driving Machine

Workshop 7—Editing .dcf and .dcd Files...

$ UNITS

[UNITS]

LENGTH = 'meters’
FORCE =’newton’
ANGLE ='radians’

MASS ='kg’
TIME ='sec’
$ CLOSED_LOOP

[CLOSED_LOOP]
STEERING_CONTROL = "path’
SPEED_CONTROL ="'none’

(DATA)

{X Y}
0.0 0.000
45.0 0.000
52.5 0.000
60.0 0.000
90.0 3.5
102.0 3.5
115.0 3.5
140.0
147.0
155.0
162.0
170.0
200.0
300.0
400.0
500.0

[cNeoNoNoNoNoNoNoNe]

Working with the default .dcf file

In this section, you open an assembly, perform afull-vehicle analysis on the default .dcf file,
and then review the results.

To open an assembly:

1 From the File menu, point to Open, and then select Assembly.

2 Search the shared database for MDI_Demo_Vehicle.asy.

100 Driving Machine

Workshop 7—Editing .dcf and .dcd Files...

To perform the full-vehicle analysis:

1 From the Simulate menu, point to Full-Vehicle Analysis, and then select DCF Driven.
2 Inthe Output Prefix text box, enter default.

3 Right-click the Driver Control Files text box, and from <shared>\ driver_controls.thl, double-
click iso_lane_change.dcf.

4 Select OK.

To review results:

From the Review menu, select Postprocessing Window or pressthe F8 key.
From the Simulation list, select default_iso_lane_change.

From theFilter list, select user_defined.

From the Request list, select chassis_displacements.

From the Component list, select lateral.

Select Add Curves.

o a0 A W N P

The plot displaysthe lateral displacement of the chassis, as defined in your driver control
datafile. The plot shows how the car drives from one lane to another and back.

To copy the .dcf and .dcd files into your private database:

1 From the Tools menu, point to Database Management, and then select Database Info to check
the path to the shared database.

2 From the shared database, copy the SO lane change .dcf file, iso_lane_change.dcf, into
your private database.

3 Renameit toiso_lane_change_mod7.dcf.

4 From the shared database, copy the .dcd file, iso_lane_change.dcd, into your private
database.

5 Renameitiso_lane_change _mod7.dcd.

Driving Machine 101

Workshop 7—Editing .dcf and .dcd Files...

Editing the .dcd and .dcf files

Modify the .dcd file by increasing the displacement of the lane change, and then change the
namesin your .dcf and .dcd filesto correspond to their new names. For the .dcd file, renamethe
file name in the MDI_HEADER block. For the .dcf file, rename the file name in the
MDI_HEADER and the LANE_CHANGE mini-maneuver blocks.

To edit the iso_lane_change_mod7.dcd file:

» Changethethreeentriesin the’Y column datafrom 3.5 to 10, as seen in this excerpt:

N

[CLOSED_LOOP]
STEERING_CONTROL = 'path’
SPEED_CONTROL = none’

------------------ CLOSED_LOOP

(DATA)
{X Y}
00 0.000
450 0.000
525 0.000
60.0 0.000
90.0 10
102.0 10
1150 10
1400 0O

Running an analysis and reviewing its results

Run afull-vehicle analysis on the modified .dcf file in your private database.

To perform the full-vehicle analysis:

1
2
3

102

From the Simulate menu, point to Full-Vehicle Analysis, and then select DCF Driven.
In the Output Prefix text box, enter mod7_iso.

Right-click the Driver Control File text box, point to Search, and then select
<private>\driver_controls.tbl.

Double-click iso_lane_change_mod?7.dcf.
Select OK.

Driving Machine

Workshop 7—Editing .dcf and .dcd Files...

To review the analysis results:

1

o 0~ WN

Launch ADAM S/PostProcessor.

Y ou should still see the plot from the first lane change analysis.
From the Simulation list, select mod7_iso.

From theFilter list, select user_defined.

From the Request list, select chassis_displacements.

From the Component list, select lateral.

Select Add Curves.

The plot showsthat the car hastravel ed farther than in thefirst analysis. It does not exactly
meet the desired path of 10 m (10000 mm), because a closed-loop controller performsthe
maneuver to provide the best possible response given the desired output and simulation
conditions. If, say, we had given the Driving Machine more time and/or greater distance to
perform this maneuver, it would be able to more closely meet the 10 m desired path.

So, for example, if you changed your .dcd file as shown next, you would see that the |l ateral
displacement would be closer to the desired value of 10 m:

(DATA)
{X Y}
0.0 0.000
45.0 0.000
52.5 0.000
60.0 2
90.0 4
102.0 6
115.0 8
140.0 10
147.0 10
155.0 8
162.0 6
170.0 4
200.0 2
300.0 0.172
400.0 0.172
500.0 0.172

For more tips on the Driving Machine, see the knowledge base article 9058 (key words:
ADAMS/Driver, ADAMS/Driver-Lite, ADAMS Driving Machine, SDI, test rigs) at: http:/
/support.adams.com/kb/fag.asp?ID=kb9058.html.

Driving Machine 103

http://support.adams.com/kb/faq.asp?ID=kb9058.html
http://support.adams.com/kb/faq.asp?ID=kb9058.html

Workshop 7—Editing .dcf and .dcd Files...

104 Driving Machine

PLOT CONFIGURATION FILES

Thismodule explains plot configuration files, how to create them, and how to
review the results of your analyses.

What's in this module:
= What is a Plot Configuration File?, 106

= Workshop 8—Creating Plot Configuration Files, 107

105

What is a Plot Configuration File?

A plot configuration file defines a series of predefined plots
created by using analysis results. This file is a collection of plot
templates that stores the information about what output
components to use for vertical and horizontal axes, titles, labels,
scaling, legends, and so on. These files set up the commands to
create the plots, not the actual plots. This file prevents you from
creating each individual plot every time you run a particular
simulation. This file is stored in the plot_configs directory (table)
as an ASCII file.

To create a plot configuration file, first create the desired plots
in ADAMS/PostProcessor (pages and curves). Then, go to
Files -> Export -> Plot Config.

To load a plot configuration file, while in ADAMS/PostProcessor,
go to Plot -> Create Plots, and specify the analysis and the plot
configuration file (*.plt).

You can also include a set of ADAMS/View commands to execute
after you've loaded the defined plots. These commands can
change the format of the plots or modify the data associated
with a curve.

106 Plot Configuration Files

Workshop 8—Creating Plot Configuration Files

XX
I

X w) This workshop takes about one half hour to complete.

Vil v
Vi VIV

Problem statement

For thisworkshop, simply create a series of suspension plots and save a plot configuration file.

Basic plot configuration steps:

1 Runasuspension analysisin the Standard Interface.

2 Makeplots by hand in ADAM S/PostProcessor.

3 Savethe plot configuration file (.plt) in ADAM S/PostProcessor.
4 Re-runthe analysisin Standard Interface.

5 Load the plot configuration file (.plt) in ADAM S/PostProcessor.

The same plots are made automatically with the plot configuration file.

Plot Configuration Files 107

Workshop 8—Creating Plot Configuration Files. ..

108 Plot Configuration Files

PARAMETERIZATION

This module explains how ADAMS/Car models are parameterized, by
location and orientation, using hardpoints and construction frames.

What's in this module:

= Parameterization in ADAMS/Car, 110
= Creating Hardpoints, 111

= Creating Construction Frames, 113

= Location Parameterization, 115

= Orientation Parameterization, 120

109

Parameterization in ADAMS/Car

Why parameterize?

Parameterizing a template allows you to build relationships into the model so that when you
change amodeling entity, ADAM S/Car automatically updates all other entities that depend on
it. You can, therefore, build awhole vehicle model to depend on only afew key hardpoints and
variables, saving time and effort in making design changes.

What can you parameterize?
» Location and orientation expressions
= Geometry
= Group activity
« Functions

= Andsoon

110 Parameterization

Creating Hardpoints

Hardpoints define all key locations in your model. They are the
most elementary building blocks that you use to parameterize
locations for higher-level entities, such as construction frames,
parts, and attachments. Hardpoints are the same as points in
ADAMS/View.

You create hardpoints in Template Builder. To create hardpoints,
go to Build -> Hardpoints -> New. In the dialog box, specify the
name of the hardpoint, if it's a left, right or single, and the
location. When you create a left or right hardpoint, ADAMS/Car
creates a corresponding paired hardpoint by reflecting the
location along the car's longitudinal axis.

You can modify hardpoints by right-clicking the hardpoint and
selecting the hardpoint name followed by Modify.

hpl_Outer_location

Far: ground

—Hardpoint hpl_Cuter_location »

tAodify
Info
Delete

Bename

Parameterization 111

Creating Hardpoints. ..

You can also modify hardpoints by going to Build -> Hardpoint,
where you can select:

= Table- Every hardpoint in the model appears and you can enter new locations for all.

« Maodify - You can modify only one hardpoint at atime.

112 Parameterization

Creating Construction Frames

Construction frames are building blocks that you use whenever an

entity requires that you specify an orientation in addition to a
location. Construction frames are the same as markers in

ADAMS/View.

To create construction frames, go to Build -> Construction Frame

-> New. In the dialog box, specify the name and if it's a left,

right, or single. Define the location and orientation, by selecting
one of the following options.

Location parameterization

Deltalocation from coordinate
Centered between coordinates
Located on aline

Located along an axis

L ocation input communi cator
L ocated at flexible body node

Orientation parameterization

User entered values (Euler angles)
Delta orientation from coordinate
Paralel to axis

Oriented in plane

Orient to zpoint - xpoint

Orient axisaong line

Orient axis to point

Orientation input communicator
Toe/camber

Parameterization

113

Creating Construction Frames...

To modify construction frames, right-click the construction frame
and select the construction frame name followed by Modify.

cfl_uter_reference_frame

hodify
Info
Deleta

Fename

You can also modify construction frames by going to Build ->
Construction Frame -> Modify. In the dialog box, select the name
of the construction frame you want to modify. You can modify the
location and orientation.

114 Parameterization

Location Parameterization

Delta location from coordinate
= Locate with respect to a defined reference frame.

= Youcandefine X, Y, Z displacement in the local or global coordinate reference
frame.

_example

fl Delta Location

1 Create Construction Frame

Construction Frame IDElt‘f'—l-':'c‘f'“':|n

Type & leit © right © single

Lozation Dependency I Delta location from coordinate j

Global reference frame

Coordinate Feference I _example. ground. hpl_one

Coordinate reference

Location I o000

Location in

Location is 100 length units
along global x-axis

Parameterization 115

Location Parameterization. ..

Centered between coordinates

= Using the two-coordinates method, the entity islocated on the mid-point along an
imaginary line joining the defined reference coordinates.

= Using the three-coordinate method, the entity is located on the center point of a plane
defined by the three reference coordinates.

cfl_Centred_two
¥

1 Create Construction Frame

Construction Frame ICentred_twa

Type & lgit O rght © single

Location Dependency I Centered between coordinates j

Centered betwaen I Twio Coordinates j

Coaordinate Feference #1 I._e:-:ample.ground.hpl_one

Coaordinate Reference #2 I._e:-:ample.graund.hpl_twa

116 Parameterization

Location Parameterization. ..

Located along an axis

= Theentity islocated a defined distance along the chosen axis of the reference
construction frame.

= Inthisexample, the entity has been located 100 length units along the z-axis of the
reference construction frame.

_example

1 Create Construction Frame

Construction Frame I"""‘IDr"g—a”—f"‘"S

Type & Jeft © gight € single

Location Dependency I Lozated along an axis j
Constuction Frame I _example.ground. cfl_D atum

Digtance Im':'

s |r* w O Y6 Z

Parameterization 117

Location Parameterization. ..

Located on a line
= Locatesthe entity along aline defined by the two reference coordinates.

= Theentity islocated a defined percentage along the line measured from the first
reference coordinate to the second reference coordinate.

_Along_a_line

1 Create Construction Frame

Construction Frame IAID”Q_a_li”E
Type & et © rght © single
Location Dependency I Located on a line j
Caardinate Reference $#1 I._e:-:ample.ground.hpl_one
Caardinate Reference #2 I._E:-:ample.ground.hpl_two
a0
Fielative Location (%] _‘I [_’I

118 Parameterization

Location Parameterization. ..

Location input communicator
= Locatesthe entity using location data from the chosen input communicator.
= Usethis option to locate entities with respect to reference frames in other templates.

= At theassembly stage, the location datais communicated to the input communicator
from the corresponding output communicator in the other template. Up to that point,
the entity islocated at theinitial value defined in the input communicator.

1 Create Construction Frame

Caonstruction Frame I'W'heel_center

& left & right ¢ zingle

Type

Location Dependency I Lozation input carmmunicator j

Input Communicator I ._macpherzon.cil_wheel_center

1 Create Input Communicator

List Imputs Input Communicatar Namel Attachment_1

Type 0 left € right T single

Matching Hame(z]

Entity I location j

From Minor Role I inherit j
Imitial ' alue |125.EI, 80,0, 100.0

Lizt Outputs | 0k | Apply | Cancel

Parameterization 119

Orientation Parameterization

Delta orientation from coordinate
Orients the entity with respect to the reference frame, using the Euler angle
orientation defined.

In this example, the entity has been defined such that there is no change in orientation
with respect to the reference construction frame.

cfl_Delta_orientation
b T

/A\/Q\
I Delta orientation from coordinate Ad

I ._example. ground. cfl_D atum_ref_frame

Orientation Dependency

Conztruction Frame

Orientatiorn

IEI,EI,D

0k Apply Cancel

120 Parameterization

Orientation Parameterization...

Delta orientation from coordinate

Orients the entity with respect to the reference frame, using the Euler angle
orientation defined.

In this example, the entity has been rotated -30 degrees about the reference frame
z-axis and then 90 degrees about the new x-axis.

Orientation Dependency Delta arientation from coordinate j

Camsiveian Fiems I ._ewample. ground.cfl_Datum_ref_frame

Oriertation |-3|l 50,0

0k Apply Cancel

Parameterization 121

Orientation Parameterization...

Parallel to axis

= Orientsthe defined axis on the entity paralld to the defined axis on the reference
frame.

= Inthisexample, the z-axis of the entity is oriented parallel to the negative x-axis on
the reference frame.

_example

cfl_Parallel_to_axis

cfl_Datum

Orientation Dependency I Parallel to auis j

Canstruction Frame I ._ewample. ground. ofl_Datum

Wz K

Lz on Enfity

Aziz on Frame ‘t"‘ Sl G QS O R

0k Apply Cancel

122 Parameterization

Orientation Parameterization...

Oriented in plane

Orientsthe z-axisalong aline defined by thefirst and second reference coordinates, and orients
the x-axis such that the entities zx plane liesin the plane defined by the three reference
coordinates.

it_in_plane

Orientation Dependency Oriented in plane ﬁ
Caardinate Reference $#1 I._e:-:ample.ground.hpl_one

Caardinate Reference #2 I._E:-:ample.ground.hpl_two

Coordinate Reference #3 I._E:-:ample.ground.hpl_three

dues (Ol ST

0k Apply Cancel

Parameterization 123

Orientation Parameterization...

Orient to zpoint-xpoint

Orients the z-axis towards the first reference coordinate and the x-axis towards the second
reference coordinate.

Orientation Dependency

I Orient bo zpoint-xpoint

Coordinate Reference #1

Coordinate Reference #2

I ._example. ground. hpl_two

I ._example. ground. hpl_three

Ares

[Gl

0k Apply

Cancel

Orients the x-axis towards the first reference coordinate and the z-axis towards the second

reference coordinate.

Orientation Dependency

I Qrient to zpoint-«paint

Coordinate Reference #1

Coordinate Reference #2

I ._ewample. ground. hpl_two

I ._example. ground. hpl_three

Ares

‘t"‘zxﬁ'

] Apply

Cancel

124

Parameterization

Orientation Parameterization...

User-entered values

Orients the construction frame using Euler angles: Z-X'-Z' incremental rotations with respect
to the global construction frame (origo).

_example

cfl_Delta orientation

Orientation Dependency I Izer entered walues j
Uriert using & Eulertngles © Direction Vectars

Euler Angles I 90,90,90

Wector IU-U,U.U.'I 0

Z Wector ITU,U.U.U.U

0k Apply Cancel

Parameterization 125

Notes

126 Parameterization

10 BUILDING TEMPLATES

This module provides details on creating templates, their components, and
their purpose in the hierarchy of ADAMS/Car.

What's in this module:

= Template Overview, 128

= Template Topology, 129

= File Architecture, 130

= Building a New Template, 132

= Types of Parts, 133

= Rigid Bodies (Parts), 134

= Flexible Bodies (Parts), 135

= Geometry, 136

= Attachments (Joints and Bushings), 137
= Springs, 138

= Dampers, 140

= Bumpstops and Reboundstops, 141
= Suspension Parameter Array, 142

= General Advice, 143

= Workshop 9—Template-Builder Tutorial, 144

127

Template Overview

ADAMS/Car templates are parameterized models in which you
define the topology of vehicle components. Building a template
means defining parts, how they connect to each other, and how
the template communicates information to other templates and
the test rig. A template could represent a single set of
components or a complex collection of components.

At the template level, it is not crucial that you correctly define
the parts' mass properties or assign force characteristics,
because this can be set at the subsystem level. It is very
important, however, to correctly define part connectivity and
exchange of information, because you cannot modify them at the
subsystem level.

When building templates, keep in mind the assembly process. That
is, make sure that your templates can communicate to each other
and can communicate to the test rigs you specify. Communicators
define how the different subsystems exchange information.

128 Building Templates

Template Topology

In ADAMS/Car, creating topology consists of creating elements,
such as hardpoints, parts, attachments, and parameters that
define subsystems, as explained next:

= Creating hardpoints and construction frames - Y ou first create hardpoints and
construction frames. Hardpoints and construction frames are the ADAMS/Car
elements that define all key locations and orientations in your model. They are the
most elementary building blocks that you can use to parameterize higher-level
entities. Hardpoint locations define most parts and attachments. Hardpoints are only
defined by their coordinate |ocation. Coordinate frames are defined by their location
and orientation.

= Creating parts - Once you'’ ve defined hardpoints and construction frames, you will
use them to create parts.

= Creating attachments - Finally, you create the attachments, such as joints, bushings,
and parameters, which tell ADAMS/Car how the partsreact in relation to one
another. Y ou can define attachments for the compliant and kinematic analysis modes.
The compliant mode uses bushings, while the kinematic mode uses joints.

Before you begin to build your template, you must decide what
elements are most appropriate for your model. You must also
decide which geometries seem most applicable to each part or
whether you want any geometry at all. Once you've decided, you
create a template and its basic topology.

Building Templates 129

File Architecture

The file architecture of the ADAMS template-based products is
comprised of the following types of files which are stored in
databases:

= Property files
= Templates
= Subsystems

= Assemblies

The figure on the next page illustrates how template-based
products use this architecture: a template uses property files to
Er-ovide data for components such as springs, dampers, and

ushings. When creating a new subsystem, you can reference the
property files that the template references, or reference other
property files held either in a different database or with a
different file name, as indicated by the dashed lines. A collection
of subsystems merged together forms an assembly.

130 Building Templates

File Architecture...

optional

mandatory

Subsystem
File

Subsystem
File

Building Templates 131

Building a New Template

To build a new template, you will create various parts,
geometries, attachments, joints, and more - all of the entities
necessary to create your model. To build a template, you first
need to know about the available entities in ADAMS/Car, which
will be described in the next sections.

Described in this module are:
= Rigid bodies (parts)
= Geometry
= Attachments (joints and bushings)
= Springs
« Dampers
= Bumpstops and reboundstops

= Thesuspension parameter array

Templates also require communicators, a very important part of
ADAMS/Car, which allow you to pass different pieces of
information from subsystem to subsystem, and necessary for
assemblies. Communicators are described in the next module.

132 Building Templates

Types of Parts

Rigid bodies (parts)
= Aremovable parts.
» Havemassand inertia properties.

= Cannot deform.

Flexible bodies
= Aremovable parts.
» Havemassand inertia properties.

= Can bend when forces are applied to them.

Ground part
= Must exist in every moddl.

= Definesthe globa coordinate system (GCS) and the global origin, and, therefore,
remains stationary at all times.

= Actsastheinertial reference frame for calculating velocities and accel eration.

Mount parts and switch parts

= Mount parts are massless parts that will be replaced by other partsin the assembly
process.

= Switch parts are a'so massless parts and act like a switch for connections. By
changing the switch part, one part will connect to another.

Building Templates

133

Rigid Bodies (Parts)

A rigid body is called a general part, and is abbreviated with
gellrs] (ge for general part, [Irs] for left, right, or single). These
parts can move relative to other parts and have the following
properties:

« Mass
= Inertia

= Initial location and orientation [called alocal body reference frame (LBRF) or a part
coordinate system (PCS)]

= Initial velocities

To create a new rigid body in ADAMS/Car, go to Build->Parts
-> General Part, and select either:

= New - Specify the location and orientation of the local body reference frame (LBRF),
together with the mass properties for the body. This does not create the geometry of
the part.

= Wizard - Select two or three hardpoints or construction frames that the part will be
parameterized against. The Wizard creates the part and the geometry.

A part is used by ADAMS/Solver to perform the analysis, as
opposed to a part's geometry, described in Geometry on page 136.

134 Building Templates

Flexible Bodies (Parts)

You create flexible bodies by importing an external file. For
information on flexible bodies, see Using Flexible Bodies on page 159.

Building Templates 135

Geometry

A very important aspect of the ADAMS line of products is the
concept of geometry (known as graphics in ADAMS/View).
Geometry is used to enhance the visualization of a part using
properties such as:

= Length
= Radius
= Width

= Thickness

As opposed to parts, geometry is not necessary to perform
simulations. So, you can have a part without a geometry, but not
a geometry without a part.

Note that sometimes ADAMS/Car creates the geometry for you
automatically when you create a part. For example, the Wizard
option does this. However, if you create a part with the New
option, no geometry is created. You can then create or add
geometry based on your own input.

136 Building Templates

Attachments (Joints and Bushings)

Attachments, in the ADAMS/Car world, are joints and bushings,
and these define how the parts in your modef react to one
another. You can define attachments for the compliant and
kinematic analysis modes. The compliant mode uses bushings, while
the kinematic mode uses joints.

= Bushings - Provide three-dimensional forces and moments between parts, cal culated
with stiffnesses. Y ou specify parameters, such as stiffness, preload and offset, that
define bushings. Note that thisis different from the BUSHING statement in
ADAMS/View, which uses a constant stiffness and damping. In ADAMS/Car, the
bushing effectively actsasaFIELD in ADAMS/View.

= Joints- Provide akinematic constraint between parts. Y ou specify the type of joint
that is applicable to your model.

You can place both joints and bushings at the same part
connections in a model. You can switch between the two
attachments, activating one while deactivating the other. Thus,
you can simulate kinematic and compliant analyses with the same
model. You can also mix your model, using both joints and bushings
for the same analysis.

Building Templates 137

Springs

When creating a spring, you need two coordinates to attach the
two ends for the spring. The coordinates can be either hardpoints
or construction frames. Then, to define the spring, you must
specify:

= Two bodies between which you want the force to act and two reference frames
(points at which the spring is attached on the bodies).

» Installed length of the spring, which will be used to derive the design preload on the
spring.

= Property file, which contains the free length information, as well as the force/
deflection characteristics.

1 Modify Spring x|
Sprifg I _mdi_vehicle front_susp.ner_mainzpring
Property Fils I {shared: /zprings. tbl/mdi_0001 . zpr

I Installed Length j |3D4.1

Symmetric & ez O o
-&ﬁ @ ok, | Apply | Cancel

1 Calculate Installed Length

Desired Preload |25|:“:|

0k | Apply | Cancel |

138 Building Templates

Springs...

ADAMS/Car calculates the force exerted by the spring using the
equations shown in the figure.

Force = -k(C —DM(i,j))
" C=FL —IL + DM(i,j)*

»

Free length
Installed length

Where,
« Cisaconstant
= FL istheisthefreelength of the spring, as defined in the property file
= |IL isthedefined installed length

= DM(,))* istheinitia displacement between the | and J coordinate reference points. If
you enter asmaller value for DM(i,j)*, ADAMS/Car calculates an increased prel oad
for the spring; conversely, a decreased preload.

= Forcerepresentsthe spring force.

= K isthenonlinear spring stiffness derived from the property file.

Building Templates 139

Dampers

When creating dampers, you specify the two endpoints and the

property file. Unlike a spring, a damper doesn't need a preload.
ADAMS/Car also creates the geometry for the damper, like the
one shown next.

140 Building Templates

Bumpstops and Reboundstops

Bumpstops

= Define aforce-displacement relationship between two parts. Bumpstops act between
user-specified coordinate reference points on each part, and conform to the force-
displacement curve described in the designated property file. The bumpstop forceis
activated when the displacement between the two coordinate references exceeds a
certain value, that can be defined either by either of the following:

o Clearance - Defines how much part | can travel towards part J before the force
activates.

o Impact length - Defines how close part | can come to part J before the force
activates.

Reboundstops
= Work similarly to bumpstops, but act in rebound, instead of jounce like bumpstops.

ADAMS/Car also creates graphics for the elements shown next:

J part

-

A

Clearance

Building Templates 141

Suspension Parameter Array

You access the suspension parameter array dialog box by going to
Build -> Suspension Parameters -> Characteristics Array -> Set.

You first create variables defining toe and camber angles.
Because these variables are commonly used for suspension
analyses, ADAMS/Car creates both of them in one step. These
are defined using a steer axis.

A steering axis is created using either of these methods:

= Geometric method - ADAMS/Car calculates the steer axis by passing aline through
two noncoincident points located on the steer axis. To use the geometric method, you
must identify two parts and two hardpoints that fix the steer axis. For aMacPherson
strut type suspension, you might identify the wheel carrier part and a hardpoint
located at the lower ball joint for the first point and the strut rod and a hardpoint
located where the strut attaches to the body for the second point.

= Instant-axismethod - ADAMS/Car calculates the left and right steer axes from the
suspension’s compliance matrix. While the calculation is performed numericaly, itis
best described in physical terms. To calculate the steer axis at a given suspension
position, ADAMS/Car first locks the spring travel and applies an incremental steering
torque or force. Then from the resulting translation and rotation of the wheel carrier
parts, ADAMS/Car calculates the instant axis of rotation for each whedl carrier. The
instant axes of rotation are the steer axes.

Finally, you set the suspension type as being independent or
dependent.

142 Building Templates

General Advice

Make a sketch on paper first.

Start with the hardpoints. Follow corporate naming or numbering
convention where possible. This ensures that your templates can
be successfully used by others within your company.

Proceed down through the Build menu.
Write comment strings when creating new objects.

Don't forget there is dialog box help using the F1 key (if
installed), as well as online help.

For some components, you have more options in the modify dialog
box than in the create dialog box (for example, rigid part). In
that case, create the component first and then parameterize it
properly using the modify dialog box.

Parts can be: rigid/flexible bodies, mounts, switch, nonlinear rods
(beams in ADAMS/View terminology).

The mass Br'oper-fies of rigid parts can be user-entered or
geometry-based.

Sunpor'fed geometries are: cylinders, ellipsoids, arms, links, and
outlines.

Attachments can be kinematic constraints or bushings.

1Ifor-cc»: elements include: springs, dampers, bumpstops, adjustable
orces.

Advanced elements are described in the following chapters.

Building Templates 143

Workshop 9—Template-Builder Tutorial

XX
I

w N n) This workshop takes about two hours to compl ete.

Vil v
Vi VIV

Go through Template-Builder Tutorial in the guide, Getting Sarted Using ADAMS/Car.

Asyou go through the tutorial, keep in mind that when building new templates, it's good
practiceis to write documentation about the templates. Otherwise, it will be difficult for

someone else to use your templates.

144 Building Templates

11 COMMUNICATORS

This module introduces communicators, which control how ADAMS/Car
assemblies are created and how subsystems exchange information.

What's in this module:

= Types of Communicators, 146

= Classes of Communicators, 147

= Communicator Roles, 149

= Naming Communicators, 150

= Matching Communicators During Assembly, 151

= Workshop 10—Getting Information About Communicators, 155

145

Types of Communicators

Communicators are the key elements in ADAMS/Car that enable
the different subsystems that make up your assembly to exchange
information with each other and with test rigs.

A communicator is an ADAMS/View variable. A communicator
contains either a(n):

= Object (for example, apart, variable, marker, or joint)
= Real vaue (for example, x,y,z location)

= String

Types of Communicators

An assembly requires two directions of datatransfer between its subsystems. To provide for
these two directions of data transfer, ADAMS/Car has two types of communicators:

= Input communicators - Demand information from other subsystems or test rigs.

= Output communicators- Provide information to other subsystems or test rigs.

Think of an input communicator as an electrical plug, and an
output communicator as a power strip. The electrical plug requires
electricity from the power strip.

For example, a mount communicator in the rack and pinion steering
templates outputs the rack part name so that tie rods of
suspension templates can attach to the rack. In addition, a mount
communicator in the steering template inputs a part name to
determine where to attach the steering column to the body.

146 Communicators

Classes of Communicators

The class of a communicator indicates the kind of information it
exchanges. For example, communicators of the class hardpoint

exchange a location through a hardpoint name and a part name.

The classes of communicators and the information that each class
exchanges are listed in the table below. The classes apply to both
input and output communicators.

The class: Exchanges:

Mount Part name to provide connections between subassemblies. As a shortcut, the
template-based products also automatically create input mount
communicators when you create a mount part.

Marker Hardpoint and part name to provide both location and part information. If the
hardpoint is part of asymmetrical pair, the template-based products create an
input communicator for each hardpoint in the pair.

Joint Joint name.

Joint-for-motion Joint name.

Bushing Bushing name.

Array ADAMS/Solver array name.
Spline Spline name.

Differential Differentia equation name.

Solver variable

ADAMS/Solver variable name. Y ou must use an ADAMS/Solver variable
and not an ADAMS/View variable. Unlike an ADAMS/View variable, an
ADAM S/Solver variable' s computation occurs during analysis. ADAMS/Car
generates ADAM S/Solver variables as state variabl es.

Location The location of the named hardpoint or construction frame. If the hardpoint is
part of asymmetrical pair, the template-based products create two input
communicators, one for each hardpoint in the pair.

Motion Motion name.

Part Part name.

Orientation The orientation of the named construction frame.

Real parameter A parameter variable name of the typereal.

Integer A parameter variable name of the type integer.

parameter

Communicators

147

Classes of Communicators...

A communicator can be either single or be part of a symmetrical
pair, either left or right. Entity classes (array, differential

equation, motion, parameter variable, solver variable, and spline)
have no symmetry and, therefore, are always single, by default.

148 Communicators

Communicator Roles

Each communicator has a minor role. A minor role defines the
communicator's position in the assembly. ADAMS/Car provides you
with five default minor roles:

=« Front
= Rear

« Trailer
» Inherit

= Any

If you select inherit, the minor role of the communicator will
become that of the subsystem using the template.

You can define a communicator’'s minor role when you create it.
For example, if you want to provide input to or output from
subsystems of specific roles, then you set the minor role for
communicators when you create them. We recommend, however,
that you do not set a communicator's minor role. Instead, let the
subsystem do it. For example, a suspension template might be
used to define either a front or rear suspension subsystem. By
letting the subsystem determine the minor role, the assembly
process attaches a steering system to the front suspension and
not to the rear.

Communicators 149

Naming Communicators

After you create a communicator, ADAMS/Car assigns a prefix to
the name. For example, it creates a prefix, ci/_ where: ¢/
indicates it is an input communicator. If it were an output
communicator, ADAMS/Car would use co. / indicates it is for the
left side of a symmetrical pair. If it were for the right side,
ADAMS/Car would use an r (cir). If it were a single
communicator, it would have an s (c/s).

If you create a mount part, ADAMS/Car automatically creates an
input communicator of the class mount. It uses the name of the
mount part as the name of the communicator and appends the
prefix ciflrs] to it, depending on whether or not it is a /eft,
right, or single communicator. For example, if you create a mount
part of mt/_rack_mount, ADAMS/Car creates an input
communicator with the name ci/_rack_mount, where the /indicates
it is for the left side. Note: You cannot create a mount input
communicator by itself. You must create a mount part, and
ADAMS/Car wilr automatically create the communicator for you.

As you name communicators, you should ensure that any input and
output communicators that exchange information have matching
names. For example, the name you give to communicators that
exchange a part name during assembly might be
ciflrs]_strut_mount and coflrs] strut_mount. In addition, if you
are working with MDI templates, you must ensure that you use
the same naming conventions as the MDI templates.

150 Communicators

Matching Communicators During Assembly

For a pair of communicators to exchange information during
assembly, the communicators must:

Have matching names.

Be of opposite types (one input, one output).

1

2

3 Beof the same symmetry type (l€ft, right, or single).

4 Beof the same class (exchange the same type of information); for example, mount.
5

Have the same minor role or be assigned arole of any.

If an input communicator does not have a corresponding output
communicator, ADAMS/Car returns a warning message, and, if
the input communicator belongs to the class mount, ADAMS/Car
assigns the mount part to ground. ADAMS/Car gives you a warning
message, because your input communicator does not have the
information it requires and, thus, your assembly may not have all
of the information it needs to work properly.

On the other hand, if an output communicator is not linked up with
one or more input communicators, you will not get a warning upon
assembling your subsystems, because simply publishing information
has no direct effect on the operation of your assembly.

You can still analyze the model if it does not have matching
communicators. In fact, you may find this helpful if you want to
run an analysis of a subsystem without attaching another
subsystem to it.

Communicators 151

Matching Communicators During Assembly. ..

For example, the following pairs of input and output
communicators match and exchange a part name during assembly.

3 1
The/pair: Belongs to the class: From minor role: To minor role:
2 ciHstrut_mount mount 4 front —— 5

Ycd&lL_strut_mount mount front

cil_strut_mount mount any

col_strut_ mount mount front

cil_strut_mount mount front

col_strut_mount mount any

In addition, an input communicator can only be matched with one
output communicator, but one output communicator can be
matched with an unlimited number of input communicators. This is
because input communicators need all of the information provided
by a single output communicator, and if there is more than one
Sﬁecified, the input communicator will not know which one to
choose.

Alternatively, output communicators just publish information, and
can give this information to whatever input communicator needs it.
You should always check the warning messages during the
assembly, especially if the warnings refer to an input
communicator of class mount that does not get assigned and is,
therefore, attached to ground.

152 Communicators

Matching Communicators with Test Rigs

When you create a template, you must meet the following
conditions to ensure that analyses will work with your new
template:

= Thetemplate must be compatible with other templates and with the test rigs, for
example, the._ MDI_SUSPENSION_TESTRIG.

= Thetemplate must contain the proper output communicators.

If the template is a suspension template (that is, its major role is
suspension), it must contain a suspension parameters array. The
suspension parameters array identifies to the suspension analysis
how the steer (kingpin) axes should be calculated and whether the
suspension is independent or dependent.

For example, for a suspension template to be compatible with
.__MDI_SUSPENSION_TESTRIG, the suspension template must
contain the following output communicators. In the table, the
prefix [Ir] indicates that there is both a left and right
communicator of the specified name.

Output Communicators in Suspension Template

The communicator: Belongs to the class: From minor role:
co[lr]_suspension_mount mount inherit
co[lr]_wheel_center location inherit
co[lr]_toe_angle parameter_real inherit
co[lr]_camber_angle parameter_real inherit

Communicators 153

Matching Communicators with Test Rigs...

The coflr]_suspension_mount output communicators publish the
parts to which the test rig wheels should mount. As you create
these communicators, make sure that you set their minor role to
inherit. By setting the minor role to /nherit, the communicator
takes its minor role from the minor role of the subsystems that
use your suspension template.

The coflr]_wheel_center output communicators publish the location
of the wheel centers to the test rig so the test rig can locate
itself relative to the suspension. As you create these types of
communicators, make sure that you also leave their minor role set
to inherit.

The toe and camber communicators (coflr] toe angle and

coflr] _camber_angle) publish to the test rig the toe and camber
angles set in the suspension, so the test rig can orient the wheels
correctly.

For more information, see the guide, Building Templates in
ADAMS/Car.

154 Communicators

Workshop 10—Getting Information About Communicators

XX
I

IX 1

\4U v
Vi VIV

This workshop takes about one half hour to complete.

In this workshop, you learn how to perform tests and display information that will help you

understand communicators.

Getting communicator information

To get information about a communicator in your template:

» From the Build menu, point to Communicator, and then select Info.

Note: In Model Names, your current open template will automatically be selected.

To list information about all the communicators in your template:

1 Inthe Communicators Info dialog box, set Entity to All.

2 Select OK.

The Information window lists information for all communicators:

vody || e | cnises | sy T veioss e | rusiiesrs | seeiers | oo |
Linkireg uf begral sssswcicedcad in ©_resh piniss_abews ieg’
ol cwnor Huma: Climan Fros Fhirer Bl Aenvchung Fasa:

Cdi_wdel_ R iy
rin_wraaring_rcoless ne kedy

1 dinpes emmamirEtErs wars

Liscirg «f wmger comsardcesaar in

Comsrasivear Raam.

e | L |l L6 L
eea_mr_rTeck_dirslecasane
Cond ki _riedl_Caids

R _RET_PEEEr L _ERrls
[l 2T R T
rTA_irasring_reck_jesen
Sl _inekrilg_WhESL_] Sine

§ CUREAS CHENUNLCELOCE W4 Coded W

Communicators

wiy_reck_heusing_ve_Fsspanadon_mbiress

(L T

¢ _EREN_Jirdefy itakring’

LLL 2 [LLLl4 0]
A Luksiic
LLL S paEErny
_rarh_psrden_seasring’
| _PRER_PIrden_grasringt
Elads L TP
T Bilanl
PECERATAE_Tanl Lakarie
PR ARSLEE _EhAl LEkRilsL
pErERsran_mael paBarse
FAE ARkl LEESESE
Jenen_ o _merdion [Ltllal]
JESEE _IE_ Bt LERAEIE

rECE_BEREERG_ro_ PR R L
CRER_LE_Lady
rranryng_ el e body

L R -

ALaiaid Lk dsa i
EEE_FEch_ 6 el wmanere
[T T Fy
mEn_Fnasrirs_srals
G AT TR T
FmERrung_rech_jeine
FUESLLRE_ STal_] it

155

Workshop 10—6Getting Information About Communicators...

Checking communicators

Inthis section, you set up your workspace such that you can see how the communicatorsin your
rack and pinion template match up with those in a suspension template.

Y ou will open an existing template you know your new template will be connected to when you
run analyses. This alows you to see which communicators the other template requiresto
function together with your template. Y ou need to open a suspension template to do this.

Note: Make sure that all templates you want to test are open in your ADAMS/Car session.

To open a template:

1 From the File menu, select Open.

2 Right-click the Template Name text box, point to Search, and then select
<shared>\templates.tbl.

3 Double-click _double_wishbone_torsion.tpl.

The template opens as a new model, unassociated with your rack and pinion template,
whichis still open.

The doubl e-wishbone suspension appears in your workspace.

To perform a communicator test:

1 From the Build menu, point to Communicator, and then select Test.

2 Right-click the Model Names text box, point to Model, point to Guesses, and then select
_double_wishbone_torsion.

3 Repeat Step 2 to select _rack_pinion_steering.

156 Communicators

Workshop 10—6Getting Information About Communicators...

4 Inthe Minor Roles text box, enter the minor roles of the communicators. Y ou must enter
one minor role for each model or test rig that you select.

Note: Each communicator hasa minor role, which by default is one of the following:
any, front, rear, trailer, or inherit. The inherit minor role specifies that when
ADAMS/Car creates a subsystem from the template, the communicator should
inherit the subsystem’s minor role. Since when you test atemplate’s
communicators, the inherit minor roleis still undefined, entering minor rolesin
the Minor Role text area provides the communicators with their minor role. For
example, if you assign the template susp_02, aminor role of front in the Minor
Roles text area, the communicator test also changes the minor role of any
communicators in susp_02 whose minor roleisinherit to the role of front.

If you' ve used the Information window before, select Clear Information Window.
If you want to save the results, select Save Test Results to File.
In the File Name text box, enter afile name.

Select OK.

o N o O

The Information window, as shown next, lists the communicators that match other
communicators and thosethat do not. It showsthe matched communicatorsfollowed by the
unmatched communicators. The lists include the names of the input and output
communicators and the names of the templates to which they belong. Often, you'll see
many communicators that are unmatched. Many of these communicators are related to
subsystems or test rigs that you do not currently have open.

In this case, note that the communicators rack_housing_to_suspension_subframe and
tierod_to_steering are matched. However, communicators such asrack_to_body, and
max_rack_force are unmatched, because the particular templates which require this
information were not selected (and unopened).

Communicators 157

Workshop 10—6Getting Information About Communicators...

e -

l nabierviae (e

el e e L Cew | Fesdiewiie | GrmmFie | Do |

Jemmmmmccmcmccmcccccccccica Ham ol CERETNL CETETE —=--=m-ccecemammcamcanaaaaai L3

Coamsinisaior Fafihire Mass| sark_beres e bi_sospsees b osn_sus Dy s
Inparm Commmnicwncr Hess: cis_rech_hrouring _bo_respanrios_webicrsms
Locatad in: _recl_pinlen_rtasTineg
[epur Commenicwsor Bess: caf reck houring oo rarpeniicos rebfrass
OotEot Irom _didds e oL Ebds i C8EE LGl

Comsaricetor Esoching Bess: tiered_mo_ptasring
Inpar Cosmwrdcwscr Bess: oillcl_ziscced _ca_wcsscing
Lvzwcad in: _dealls wishbons corpion
Cumpis ColwadilidTon Badd: oo [Li)_tasiced La_ ftewiiag
Dubgui. [rem| _¢esl_pinlen_ileer i

e —— Unacchad (HpEt CONMEICELALE: =-=s==s=smsssssssssae)
Impure Comsmerdcesor Hess: oir rcssring coloms oo bedy
Elaid: wuohT
From Mimer Bale| Feend
Ewbichirg HBemalpl: wmearing_celusn_to bady
Iri Tomplecs: _reck_pirien_goasTirsg

g Commanblodtor Baad: oLi_fwdd_te blody
Clain| wauw
Frem Rincr Boldw: Erom
Ewcching Bamacnd: rack_ta_body
[r: Tomplars: Tl pinien IcEsTindg

Inpai Commenicei o Beae| cis_subileass_bo_lsdy
Tlurr: mowm
From Rincr Bols: froom
Earchitg Bamedni: pibfrass oo body
1nq : ’ =

To get to know the topology of the communicators within atemplate, study the inputs and
outputs and look to see how they link with other templates. When you create
communicatorsin anew template, a good way to create the communicators is to open an
existing template and create the same communicators.

A fina tip isto remember that output communicators publish information. Therefore, they
are passive and do not affect subsystem behavior. However, input communicators search
for information. They affect your simulation, particularly if they do not match.

For mare tips on how to get information about communicators, see Article 8924,
Investigating Existing Templates in the Knowledge base, at: http://support.adams.com/kb/
faq.asp?ID=kb8924.html.

158 Communicators

http://support.adams.com/kb/faq.asp?ID=kb8924.html
http://support.adams.com/kb/faq.asp?ID=kb8924.html

12 UsING FLEXIBLE BODIES

In thismodule, you will learn how to create flexible bodiesin your models, as
well as how to swap arigid body for aflexible body.

What's in this module:

= Flexible Body Overview, 160
= Limitations of Flexible Bodies, 161

= Getting Flexible Bodies, 162

= Workshop 11—Flex Tutorial, 163

159

Flexible Body Overview

ADAMS/Flex uses an assumed-modes method of modeling flexible
bodies, called modal flexibility. Modal flexibility assigns a set of
mode shapes to a flexible body. This modal method of modeling
flexibility can be very useful in problems that are characterized
by high elasticity and moderate deflections. That is, deflections
less than 10% of a characteristic length of the body.

By integrating flexible bodies into your model, you can:
= Captureinertial and compliance properties during handling and comfort simulations.

= Predict loads with greater accuracy by allowing ADAMS to account for flexibility
during simulations.

= Study deformation.

= Examinethe linear system modes of aflexible model when you use ADAM S/Flex
with ADAMS/Linear.

You should use flexible bodies wherever you expect component
flexibility to affect the dynamic behavior of your model or when
you require accurate information about the deformations of a
component in your model.

160 Using Flexible Bodies

Limitations of Flexible Bodies

When you use flexible bodies, remember that flexible body
deformations are a linear combination of deformation shapes.
Consequently, take special precautions when modeling higher order
deformations, such as those that occur when deformations are
large, or when attempting to correctly model centrifugal
stiffening of rotating systems. You can overcome these limitations
by dividing a flexible body into multiple flexible bodies and
assembling them in ADAMS/Car.

Also, note that flexible bodies are not parametric. If you want to
substitute a new flexible body in your system, you must create a
new flexible body.

Using Flexible Bodies 161

Getting Flexible Bodies

Two ways to create flexible bodies

= Importing modal neutrd files (.mnf) - To create anew flexible body, go to Build ->
Part -> Flexible Body. ADAMS/Car imports the .mnf file and creates the flexible
body.

= Creating .mnf files with Autoflex - With the additional module (it requires a separate
license), aflexible body can be generated without access to an external FEA package.
Specify the cross section, center line, and attachment points. This tool generates the
flexible body, just like importing an .mnf file.

Flexible bodies require a special part

= Creating interface parts - At every location on the flexible body where you intend to
attach ajoint or aforce, you should place an interface part. Place the interface parts
on nodes of the flexible body. Thisworks as adummy part that is attached to the
flexible body with afixed joint. You can apply other elements to these interface parts.

Note: When picking nodes for the interface parts, the interface part dialog box needs
left and right nodes and then creates left and right interface parts.

162 Using Flexible Bodies

Workshop 11—Flex Tutorial

IX

XX
I

n) This workshop takes about one and a half hours to complete.

v

Vi VIV

In this workshop, you swap arigid lower control arm with a flexible control arm.

First, in ADAMS/Car Template Builder, open the double-wishbone suspension template.

Creating a flexible body

Create the flexible body on top of therigid part, and swap the connections from therigid to the
flexible body. When nothing is referenced by therigid part, you can delete it.

To create the flexible lower control arm:

1
2

From the Build menu, point to Parts, point to Flexible Body, and then select New.
Enter the following user-entered location for the left control arm: -266.0, 0.0, -30.0 mm.

The symmetry rule automatically puts the right control arm at the same location, but with
the oppositey value. Theflexible body usesthelocal part reference frame (LPRF) that was
set in the FEA program to be the origin.

Point to the files LCA left_shl.mnf, and LCA right_shl.mnf, located in the shared database.

Select the color you want on the graphics for the flexible body. The graphics for the
flexible body reside in the .mnf file. To get a nice flexible body, you may need avery
large .mnf file.

Select OK.

ADAMS/Car displays the flexible bodies on top of the rigid bodies when in wireframe
mode.

Using Flexible Bodies 163

Workshop 11—Flex Tutorial...

Creating interface parts

Now you create interface parts at every location where you have a connection to another
element in the model. In this case, you have two connection points to the chassis. If you just
want one revolute joint to the chassis, you only need oneinterface part for the revolutejoint, but
if you want a bushing for the front and rear attachment points, you need two interface parts, one
at each bushing. Y ou also need one attachment to the damper, and finally, you need one
attachment for the upright. Y ou then substitute the corresponding interface parts that you create
for therigid parts in the attachments.

To create interface parts:

1 From the Build menu, point to Parts, point to Flexible Body, point to Interface Part, and then
select New.

Supply the following data:

The name of the interface part.

If it'saleft, right, or single.

What flexible body it’s attaching to.

Left and right node ID, or the single node ID.

Use the Pick command to do this; use the mouse to highlight nodes on your flexible
body.

Geometry radius. An interface part is represented by a sphere, so thisradiusisthe
radius of the sphere.

Color of the sphere.

2 Repeat thisfor each of the attachment points.

164

Using Flexible Bodies

Workshop 11—Flex Tutorial...

Altering connections

Y ou how change the connections from the rigid body to the interface part by modifying each
attachment.

To move the connections:

1

Right-click on the front bushing that connects the lower control arm to the subframe and
select Modify.

In the | Part text box, replace the part gel_lower_control_arm with the name for your | eft
interface part.

Select OK.

Make sure you modify all attachments at that location. For example, if you have ajoint
that is only active in kinematic mode, you also need to modify the bushing at the same
location. The graphical topology might help you find al of the connections.

To get to the graphical topology, go to Tools, point to Database Navigator, and then select
Graphical Topology.

When you're done, delete the rigid lower control arm. If you forgot any attachments,
ADAMS/Car will issue awarning and prompt you to select one of the following:

= Continue - ADAMS/Car deletes the entity you selected anyway, and any other objects
dependent on your selected object.

= Highlight & List Dependents - ADAMS/Car lists all dependenciesthat still exist in the
model. These dependencies will also be highlighted.

= Cancel - ADAMS/Car takes no action. If you select Cancel, you must delete the
dependencies manually before ADAMS/Car can delete this entity.

Using Flexible Bodies 165

Workshop 11—Flex Tutorial...

7

10
11
12

166

Edit the switch part.

This model contains a switch part that is used for an anti-roll bar (ARB). Therefore, you
must replace the gel_lower_control_arm part with the appropriate interface part in the
switch part. Because the other part in the switch part list is the upright, you'll use the
interface part used to connect the upright, aswell as the same location.

The suspension parameter array also contains the part: gel_lower_control_arm which will
be replaced by the appropriate interface part. However, the suspension parameter array
can only be set for one configuration, so you have to deleteit first and then set it with the
new interface part.

Make the following changes to the suspension parameters array (geometric):

= | Part: interface part

= JPart: gel_upper_control_arm

= | Coordinate Reference: hpl_lca_outer

= JCoordinate Reference: hpl_uca_outer

Delete the part gel_lower_control_arm.

Switch to Standard Interface and create a new subsystem and suspension assembly.
Run a suspension analysis.

If time allows, perform the Tutorial for ADAMS/Flexible Body Generator, on page 93 in
the guide, Getting Sarted Using ADAMS/Car.

Using Flexible Bodies

1 3 REQUESTS

This module introduces requests, which are the primary method of output in
ADAMS/Car.

What's in this module:

= Creating New Requests, 168

= Types of Requests, 169

167

Creating New Requests

To create new requests, in Template Builder, go to Build ->

Requests -> New. You can only create requests in Template
Builder.

Hoouast Hama
Cosim e

| _nged_chasais.cg_alo oty
||:na::s..~; wigloCitkrs

[Dﬂl‘ll‘lﬂ' Lkzinny Fu nchice Exgingasion :]

F2 |'.-"x _ngid_chassis.ges_chesss cm. _nged_chassis.grou
F3 |Vi_ngid_cheses ges_chassi.cm. _igd_chesss grow
() |".-'I|: _ngil_chasais gas_chassisom, _ngid_chassis groun
FE :Hruu-mq _ngid_chassie ges_chassis oo, _ngkd_chass
F7 |R70mriiu_mmm.qus_m:&imm roydl_chems
FB [ATOD-W2[_rigkl_chassis ges_choasis cn. _ngil_chas
Tila |

Componeni &fribuses

Flesul SelMame [chassiz_wsiociies

RS | |'-:-l.|"-lI: j
® [Femorhuinal [weinciy =
b |HITH |'Jq:~-\:cr-.- j

z |wr||:-aj |-.-:~-\:cr~.- j
AMAS | |*-:-ur-|: j
=1 |||:|I |=n-;|.im natliC iy j

A? |ph:~h |.'.rp_|.lm ATy j

GE [[angdorvsice,)

ok | seet | coms |

Redquest /—\/

168

chassis_accelerations
chassis displacements

driwver_ demands

[Chas=si:

(Chassis

welocities

dal ride_ damper data
dar_ ride_ damper data
differential

(Driver

(Chassis;l

The results set names appears in the
Request list in ADAMS/PostProcessor

The other attributes appear
(in the Component list

Component

lateral

vertical
roll
pitch
A

Requests

Types of Requests

Types of requests:
= User subroutine
= Type and markers based

= Function expression

Note that the name file (.nam) acts as key by matching ID's with
request names. You can edit the .nam file to change the name of
certain requests and the way they appear in
ADAMS/PostProcessor.

For details, see the REQUEST statement in the guide,
Using ADAMS/Solver.

Requests 169

Notes

170 Requests

1 4 TIRES

This module provides an overview of the calculation of tire forces and the
available models.

What's in this module:
= Tire Overview, 172
= ADAMS/Tire Modules, 173
= Tire Models, 175

= Tire Analyses, 176

= Workshop 12—Building a Wheel Template, 177

171

Tire Overview

172

ADAMS/Tire calculates the forces and moments that tires exert
on the vehicle as a result of the interaction between the tires and

road surface.

—> Process flow

Key:
3 Data input
ADAMS/Solver ADAMS/Tire
.adm «A tir .rdf
GFORCE, [MODEL] METHOD="2D’
RIF':FIQ:AY PROPERTY_FILE_FORMAT='PAC89| | [SINUSOIDAL]
0 = Amplitude = 20mm
STRING UCi=1.0 p
uc2=20
UC3=...

Tires

ADAMS/Tire Modules

To perform tire calculations, you need one or more of the
following modules:

Tires

ADAM S/Tire Handling module - Incorporates the following tire models for use in
vehicle dynamic studies:

o Déeft-Tyre mode from the Netherlands Organization for Applied Scientific
Research (TNO) (DTM 95, DTM 96, our most advanced models)

o Pacejka’89 and Pacejka’ 94 models
o Fiaatire model (least advanced)

ADAM S/Tire Handling uses a point-follower method to cal culatetire normal force and
islimited to two-dimensiona roads.

ADAM S/Tire Dur ability module - Uses athree-dimensional equivalent volume
method to calculate tire normal force on three-dimensional roads for use in predicting
vehicle loads for durability studies. When you purchase ADAMS/Tire Durability
separately, you can use only the Fialamodel to calculate tire handling forces and
moments.

ADAMSTireFTiremodule - The FTire moduleis the latest addition to
ADAMS Tire. A new tire model for durability and ride and handling applications,
FTire:

o Offers an effective compromise between model fidelity and detail, and
computational speed.

o Providesvalid results up to 120 Hz in the frequency domain.
o Letsyou easily derive model parameters from tire measurement data.

o Providesvalid results for short obstacles with wavelengths down to half the size
of the tire-road contact patch.

173

ADAMS/Tire Modules

o Provides highly accurate solutions when passing through potholes and over cleats.

5000
4000
000

1000

b 002 004 006 008 0d
whesl load [N]

= FTireisa2¥2D nonlinear tire model. Thetire belt is represented as aring of small
elements. Typically there are 50 to 100 elements. The elements are connected to each
other through stiff springs and dampers. Thisring of elements can be bent in any
direction relative to the wheel rim.

= FTireconformstothe TYDEX Standard Tire Interface (STI).

When you purchase ADAMS/Tire Durability with ADAMS/Tire
Handling, you can use the Delft-Tyre, Pacejka ‘89, Pacejka ‘94,
or Fiala models to calculate the tire handling forces and moments
(lateral force, longitudinal force, aligning torque, and so on).

174 Tires

Tire Models

Tire data

Tiredatais essential to obtain accurate tire forces during asimulation. If you use the Fiala
model, you can generatethetire property file by hand. If you use adifferent tire model, you must
use afitting routine to abtain the coefficients for the tire property file. Thisis usually done by
the testing facility that teststhe physical tire. Unlessthetire you want to useistested already, a
test must be performed to obtain the tire data necessary for atire property file.

Tires

Table 2. ADAMS/Tire Modules and Features

ADAMS/Tire Features:

ADAMS/Tire Modules:

Handling Durability gi?:tl)iiﬂ?yand

Handling Force Models

Fiala " " .

Pacejka ‘89 " "

Pacejka ‘94 . .

Delft MF-Tyre (Pacejka ‘ 96) n .
Normal Force Models

Linear spring force " " "

Road Contact Models

2D point follower (flat surface) " " "

3D equivalent volume (discrete surface) " "

Miscellaneous

Uses ADAMS/Solver GFORCE interface . . n

Meets STI v. 1.4 architecture standards " " .

Supports user-written STI tire models " " "

175

Tire Analyses

ADAMS/Tire reads the model block [MODEL] portion of the tire
(.tir) and road data file (.rdf) to determine which tire model and
road contact model to use when calculating the tire forces and
moments.

During an analysis, ADAMS/Tire calls the tire model to calculate
the tire forces and moments. In this process, the tire model calls
the road model to calculate the tire contact point and local road
normal, and uses these values with the tire velocity and
orientation to calculate the forces and moments.

ADAMS/Tire then returns the forces and moments to
ADAMS/Solver, which applies the forces and moments to the
wheel part.

176 Tires

Workshop 12—Building a Wheel Template

IX

In this workshop, you create awheel template that sets up the interface to your tire model.

XX
I

n) This workshop takes about one hour to complete.

v
Vi VIV

Creating a template

To create the wheel template:

1
2
3
4

From the File menu, select New.

Name the template anything you want.
Set Major Role to wheel.

Select OK.

Creating communicators

To create communicators:

1

Tires

Create two input communicators for toe and camber angles. They should be of type
parameter_real and be named toe_angle and camber_angle.

Create an input location communicator that receives the wheel center location. This
communicator positions the wheel at the location dictated by the suspension. The
corresponding output communicator, wheel_center, resides in the MacPherson
suspension you created in Workshop 9—Template-Builder Tutorial, on page 144.

177

Workshop 12—Building a Wheel Template...

Creating construction frames and mount parts

To create the construction frame and mount part:

1 Create a construction frame to be used as the spin axis. Locate this construction frame on
an input communicator, which should match the output communicator from the
suspension. This construction frame should also be dependent on two communicators for
toe and camber angles. (See the different orientation dependency options.) Verify that the
spin axis is defined right, such that the z-axis points out from the vehicle (this should be
done automatically for you).

2 Create the mount part that will attach to the suspension.

Creating the wheel part

To create the wheel part:

1 From the Build menu, point to Wheel, and then select New.
2 Create the whedl part with the following data:

Mass:

Ixx lyy:

1zz:

Property File:
Contact Type:

Coord ref loc:

Location:

Coord ref ori:

Orientation:

20.0 kg

5E4 kg-mm™**2
1E4 kg-mm**2
mdi_tireOL.tir
handling
cfl_spin_axis
0,0,0 mm
cfl_spin_axis

0,0,0deg

Note: ADAMS/Car automatically creates a pair and setsthe tire geometry in the
property file.

178

Tires

Workshop 12—Building a Wheel Template...

Viewing tire geometry

To view the tire geometry:

1 Toview thetire property file, select the View File tool @
2 Search for the data block named DIMENSIONS.

Connecting mount and wheel parts

To connect the mount part to the wheel part:

= Create afixed joint between the tire and the mount part located at the cfl_spin_axis.

Testing communicators

To test communicators:

= Test the communicators and select thistire template and the suspension template you
intend to use (make sure that you have these templates open in your session).

Notethat this template has been devel oped to be used with the M acPherson suspension
template you created in Workshop 9—Template-Builder Tutorial, on page 144. If you
use this template with another suspension, there might be other communicators you
must match.

Tires 179

Workshop 12—Building a Wheel Template...

180 Tires

1 5 EXPLORING TEMPLATES

Before you build or modify templates, it isimportant that you know how
templates are built and organized. This includes not only how parts are
connected with joints, motions, and forces, but also how the templates
exchange information with communicators. This chapter introduces methods
of exploring templatesto enable you to modify existing templatesfor you own
use and create new templates which are compatible with others.

What's in this module:

= Investigating Templates, 182
= Understanding Templates, 183
= About the Database Navigator, 184

= Workshop 13—Exploring and Completing Templates, 186

181

Investigating Templates

Investigating templates primarily involves:

= Getting information about the template components. Once you understand what
components make up atemplate and how they relate to each other, you can modify
the components to make your template unique.

= Getting information about communicators. Understanding how the template works
internally is not enough: you must also understand how it communicates with other
templates and test rigs. This understanding will help you connect your templates
correctly.

182 Exploring Templates

Understanding Templates

Guidelines to help you understand how a template is built:

1

Right-click the component for which you want to obtain information, point to the
component name, and then select Modify.

The Modify Component dialog box appears. Note the information displayed in the dialog
box, such as attachment and positioning information.

Y ou can use the Template Builder’s Build menu to list all components by type, aswell as
their specifications, such as mass, location, orientation, and so on. When requesting
information for most components, your template-based product displays the Entity
Information dialog box. From this dialog box you can select the type of component on
which you request information.

When requesting information for communicators, your template-based product displays
the Communicators Info dialog box. Use the Communicator Info dialog box to list the
communicatorsin different templates and test rigs.

Use the Database Navigator to explore your template.

Exploring Templates 183

About the Database Navigator

Displaying the Database Navigator
Y ou can display the Database Navigator by doing any of the following:
= From the Tools menu, select Database Navigator.

= From the Edit menu, execute an editing command, such as Modify, when no object is
currently selected.

= From the Edit pop-up menu, request to view information about an object using the
Info command.

= Using the Browse command, browse for the name of an object to enter in adialog
box.

The Database Navigator has several modes in which you can display object information. Y ou
cansetittojust let you browsefor objectsor you can set it to view information about the objects,
such as view how an object relates to other objects, and view dependencies. The Database
Navigator only displays the types of objects that are appropriate for the command you are
executing. For example, if you are renaming amodel, it only displays modelsin your database.
On the other hand, if you are searching for any modeling object in the database, it displays all
types of modeling objects. Y ou can also set afilter for the types of objects that the Database
Navigator displays.

The Database Navigator shows objectsin their database hierarchy.

184 Exploring Templates

About the Database Navigator...

Viewing Model Topology

Y ou can use the Database Navigator to display information about the partsin your model. Y ou
can:

« View the topology of amodel - When you regquest information about a model’s
topology, ADAMS/View determines what constraints are owned by the model and
what parts the constraints connect. There are two different ways in which you can
show the part connection information: by part and by connection. For more
information on the two ways, see the guide, Learning ADAMSView Basics.

= Graphicaly view the topology - In graphical topology, the Database Navigator
displays a representation of the selected part and shows its connections to other parts.
The connections represent the joints or forces between the parts. Each time you select
adifferent part in the treelist of the Database Navigator, the graphical display
changes to show the selected part at the center of the display.

Exploring Templates 185

Workshop 13—Exploring and Completing Templates

IX

XX
I

n) This workshop takes about one hour to complete.

v

Vi VIV

This workshop tests some of the topics about template building, including defining
communicators and joints, and investigating your template with the database navigator.

We recommend that whenever possible, you modify existing templates, rather than create new
ones. To be ableto modify existing templates and to customize them for your use, you must be
able to understand them very well.

Defining your template

To define your template:

1

186

Copy _steer_training.tpl to the template.tbl directory of your choice (for example, placeitin
private.cdb/templates.tbl).

Open _steer_training.tpl in template-builder mode.

A rack and pinion steering template appears. The template isincomplete: it needs joints to
be defined, as well as communicators and mount parts. Use the Database Navigator to
investigate the template by looking at the parts and icons, and try to determine what yet
needs to be defined for this template.

Make the necessary changes to define your template properly. To initiate exploration of
your model and challenge yourself to determine what entities still need to be defined, first
see General steps to define your template on page 187. If you have trouble or would like
to check your work, see Detailed steps to define your template on page 187 to determine
what changes should be made.

Exploring Templates

Workshop 13—Exploring and Completing Templates. ..

General steps to define your template

To define your template:

1
2

~N o o b~ W

Constrain the motion of the steering columns to each other.

Constrain the motion of the steering wheel to the steering column (Hint; Use agear to do
this. To learn more about gears, press F1 when the cursor isin the window, and then click
anywhere on the dialog box.)

Constrain the motion of the steering shaft to the rack housing.

Constrain the motion of the steering shaft to the rack (Hint: Use agear to do this).
Constrain the motion of the rack to the rack housing.

Create a mount part for the rack housing.

Make sure the rack will be able to connect to the MacPherson template you created
earlier. If necessary, create any mount parts or communicators.

Check that the steering column housing will mount properly. If necessary, create any
mount parts or communicators.

Detailed steps to define your template

To define your template:

1

Create two hooke (universdl) joints: one between the steering column and the intermediate
shaft, and one between the intermediate shaft and the steering shaft.

Create areduction gear to constrain the revolute joint for the steering wheel to the
cylindrical joint of the steering column.

Create arevolute joint between the end of the steering shaft and the rack housing.

Create a reduction gear that constrains the rotational motion of the steering shaft to the
trand ational motion of the rack.

Create atranglational joint between the rack and the rack housing.
Create amount part that will attach to the body.

Exploring Templates 187

Workshop 13—Exploring and Completing Templates. ..

188

A ApAms/Car

File Edit ¥Wiew Build Settings Tools Help

_steer_final

z
V[/_x

Open the MacPherson template created earlier, and check the mount parts and mount
communicators at the tierods. The mount input communicator tierod_to_steering in the
MacPherson template requires that a mount output communicator named
tierod_to_steering, which outputs the rack part, be defined in the template steer_training.

The steering column is already attached to a mount part named
steering_column_to_body. Edit abody template in Workshop 15—Full-Vehicle Assembly
on page 205 to make sure these communicators match properly.

Y our template should look like steer_final.tpl, which your instructor will have, and will be
used in thefinal full-vehicle workshop.

If time allows, add location communicators to your template. See knowledge base
article 9184, Position one template (part) relative to another template.

SVm{’(

P ~eElilel

Exploring Templates

http://support.adams.com/kb/faq.asp?ID=kb9184.dasp

Workshop 13—Exploring and Completing Templates. ..

Tips for exploring templates

Note: Because you perform many stepsin this section in the Database Navigator, make sure

you have the Database Navigator displayed (Tools -> Database Navigator).
Investigating model topology

To list parts and connections:

= To see parts and connections, set the option menu at the bottom of the Database
Navigator to Bodies, Constraints, or Forces.

= Set the option menu at the top to the type of information you want to see.

To view the topology of parts:

1 From the option menu at the top of the dialog box, select Topology by Parts or Topology by

Connections.

2 Fromthetreelist or view window, select an object.
Thetopology of the object appears in the text box to the right.
To graphically view the topology of parts:

1 From the option menu at the top of the dialog box, select Graphical Topology.

2 Fromthetreelist or view window, select an object.

A graphical display of the object’s topology appears in the text box to the right.

Exploring Templates

189

Workshop 13—Exploring and Completing Templates. ..

Viewing the associativity of objects

Y ou can use the Database Navigator to display the objects that a selected object uses. For
example, you can select ajoint inthetreelist to show thel and J markersthat thejoint uses. Y ou
can also select to view the objects that use the selected object.

To view the associativity of objects:
1 From the option menu at the top of the dialog box, select Associativity.
2 Settheassociativity:
o To show the objects that the selected object uses, select Uses.
o To show the objects that use the selected object, select Is Used By.

3 Fromthetreelist or view window, select an object.

The objects associated with the selected object appear in the text box to the right.

To set up automatic navigation of the objects:

= Toseewhat objects are dependent on a certain object, select Auto Navigate.

To save the current associativity information to a file:

= Select Save to File.

190 Exploring Templates

Workshop 13—Exploring and Completing Templates. ..

Viewing object information through the Database Navigator

Y ou can use the Database Navigator just as you would the Information window to display
information about the selected object.

To display object information:

1
2

Set the option menu at the top of the Database Navigator to Information.

From the treelist or view window, select an object.

The information about the object appears in the text box to the right.

To save the information to a file:

= Select Save to File.

To list the type of communicators:

1
2
3
4

From the Build menu, point to Communicator, and then select Info.
Set Type to Input.

Set Entity to All.

Select OK.

To see what is dependent on a communicator:

1
2
3
4

From the Tools menu, select Database Navigator.

In the Filter text box, enter ci*.

Set the option menu at the top of the dialog box to Associativity.
To get the relevant information, select Uses and Is Used By.

Exploring Templates

191

Workshop 13—Exploring and Completing Templates. ..

Location and orientation parametrics

To find out how the parametric dependencies are set up, you can regard two entities as starting
points: hardpoints and input communicators.

Hardpoints have no dependencies. Therefore, you can regard them as starting points for
parametrics. Y ou can parameterize construction frames and other components to hardpoints.

Y ou use parameter variables to parameterize the location and orientation of construction
frames. For more information, see the guide, Learning ADAMSView Basics.

To see what is dependent on a hardpoint:

1 IntheFilter text box, enter hp*.
2 Select ahardpoint.
3 Select Apply.
The Information window appears, displaying hardpoint location values.

4 Inthe Database Navigator, set the option menu at the top of the dialog box to Associativity
to see alist of dependents. Also, you can select Highlight to see the hardpoint position.

5 You can right-click each construction frame and select Info or Modify. The information
displayed includes information for the parametric locations in the template. For
construction frames, you look both at the expression to see how the construction frameis
parametric to other construction frames and hardpoints, and what is dependent on the
construction frame.

To see what is dependent on construction frames:

1 IntheFilter text box, enter cf*.

2 Set the option menu at the top of the dialog box to Associativity.

To list dependencies for parameter variables:

1 IntheFilter text box, enter pv*.

2 Toseethe parameter variables, set the option menu at the top of the dialog box to
Information.

3 Toseealist of dependents, set the option menu at the top of the dialog box to
Associativity.

192 Exploring Templates

16

ADDITIONAL APPLICATIONS

Other applications offered by Mechanical Dynamics are compatible with
ADAMS/Car to provide additional analysis capahilities. The following
describes how these applications fit in and affect the vehicle smulationsin
ADAMS/Car. For more information, refer to the documentation for each
application.

What's in this module:

= Conceptual Suspension Module and Driveline, 194
= Linear and Controls, 196
= Insight and Hydraulics, 197

= Vibration and Durability, 198

193

Conceptual Suspension Module and Driveline

ADAMS/Conceptual Suspension Module (CSM)

CSM isamethod of implementing functional suspension behavior in ADAMS/Car through
predefined trajectories followed by the wheel carrier during suspension travel (vertical and
steer) and external forces. Y ou benefit from using CSM because it concentrates only on final
effects (whedl carrier position and orientation) of the suspension layout, regardless of the way
in which they have been mechanically obtained. It allows you to have areduced 14 degree-of-
freedom vehicle model that can be quickly assembled, and includes al the primary nonlinear
elasto-kinematic effects of a multibody suspension model. In addition, conceptual suspension
modeling allows you to share suspension characteristics files (.scf) with others, such as
suppliers, without worrying about confidentiality.

ADAMS/Driveline

ADAMS/Drivelineisanew ADAMS modul e that you can use to quickly build and test
functional virtual prototypes of complete drivelines or driveline components.
ADAMS/Drivelineisimplemented as an add-on moduleto ADAM S/Car, hasthe samelook and
feel as ADAMS/Car, and it allows you to perform the same kinds of analyses.

Y ou can use the virtual prototypes created with ADAM S/Driveline for performance analyses,
component fatigue life estimation, and NVH characteristics. Y ou can also import those virtual
prototypes into ADAMS/Car to study full-vehicle dynamics with a driveline included.

Similar to other automotive applications, such as ADAMS/Car and ADAMS/Engine, ADAM S/
Driveline has two operational modes:

= Standard Interface — Allows designers and analysts to build up driveline designs from
a database of available templates, fill in the design-specific numerical values, and run
tests.

= Template Builder — Allows experienced users to modify templates, or create new
ones, to accommodate specific corporate needs.

194 Additional Applications

Conceptual Suspension Module and Driveline. ..

Application areas for ADAMS/Driveline include:
= Conceptual tool for driveline layout

= Full-vehicle handling analysis in front-wheel drive, rear-wheel drive, and all-wheel
drive configurations

= Torgue transfer and torque distribution studies

= Vibration analysis at the system level and the component level
= Component fatigue life prediction

= Control system design and verification

= Driveline packaging studies

= Studies of secondary motion at high operating speeds

= Studies of theinfluence of flexible components

ADAMS/Drivelinetemplate libraries provide awide range of components, including clutches,
flexible shafts, synchronized gear pairs, bearings, viscous couplings, differentials, backlash, and
gears.

ADAMS/Driveline catalog of tests and analyses includes split m, uphill and downhill driving,
impulse, step, and ramp torques, tip-in tip-out, gear shift, rock cycle, and clutch misuse.

Additional Applications 195

Linear and Controls

ADAMS/Linear

ADAMS/Linear’ skey functionisto linearize nonlinear ADAMS equations. Theresulting set of
equations enables you to calculate the natural frequencies (eigenvalues) and mode shapes
(eigenvectors) associated with your mechanical design. ADAMS/Linear also helps bridge the
gap between control systems design and ADAMS mechanical simulation capabilities by
allowing you to generate state space matrices (the plant model), which relate the measured
outputs of the system to the controlled input.

ADAMS/Controls

Control algorithms can now be used in the vehicle model. For example, including automatic
controlsin the suspension and handling design of a vehicle makesit possible to avoid an
obstacle on wet pavements. The control system designer can tune the controller for the
particular vehicle design on the computer, with confidence that the ADAMS model provides
accurate results. ADAMS/Controls allows the designer to see the effect of each change on the
computer, even comparing control strategiesthat would be too expensive or time-consuming to
test on aphysical prototype. Thisinterface allows you to model control algorithmsin Matlab,
Matrixy, or Easy5.

196 Additional Applications

Insight and Hydraulics

ADAMS/Insight

When using ADAM SInsight together with ADAMS/Car, you can plan and run a series of
experimentsfor measuring the performance of your suspension or vehicle. ADAMS/Insight will
help you to understand your designs better by distinguishing between key and insignificant
design parameters. In addition, you will be able to see the impact of design decisions on abroad
range of customer requirements, as well asimproving design robustness by considering
manufacturing variationsup front. To learn how to use ADAMS/Car with ADAMS/Insight, see
the guide, Using ADAMY/Insight with ADAMSCar.

ADAMS/Hydraulics

This module alows you to smoothly integrate system-level motion simulation and hydraulic
system design. For example, auto companies need to know the effects of hydraulic system
failures on vehicle performance and saf ety — especially since high ratingsin these areas are key
competitive advantages. Example: How is a sudden change in power steering authority sensed
by the driver while negotiating a curve at top speed? Answering this question requires failure
analyses using simulationsthat include not just mechanical systems, but also hydraulic systems
and other control system designs.

Additional Applications 197

Vibration and Durability

ADAMS/Vibration (New in 11.0)

ADAMS/Vibration is anew plug-in module, which allows you to analyze system modes
including attachment characteristics, include effects of hydraulics and controls on system
behavior, and analyze vibratory behavior in different configurations. Moreover, it allowsyou to
study forced vibrations within your ADAMS models using frequency domain analysis. For
example, you can drive an ADAMS model of an automobile over abumpy road and measureits
response. Both inputs and outputs are described as vibrations in the frequency domain.

ADAMS/Durability (New in 11.0)

ADAMS/Durability allowsyou to perform fatigue analyses using avirtual test rig, by providing
an interface to MTS and nCode products. Thevirtual test rig loads will be based on empirical
datato provide better virtual test resultsand to allow better corroboration when the actual testing
is performed.

198 Additional Applications

Workshop 14—Using ADAMS/Linear with ADAMS/Car

XX
I

w N n) This workshop takes about one hour to complete.

Vil v
Vi VIV

In this workshop, you use ADAMS/Linear to analyze the mode shapes of afull-vehicle about
an operating point.

ADAMS/Linear will linearize your vehicle model about an operating point, and return the
eigenvalues and eigenvectors to help validate your model or investigate excited frequenciesin
your vehicle. For example, a sweep of animations of the modes will help indicate that parts are
connected properly. To get the eigenvalues and eigenvectors, use an .acf filein ADAMS/Car to
submit the LINEAR commands. ADAMS/View can perform this analysis from the toolbar,
because it has an interface for this function. Because ADAMS/Car doesn't have thisinterface,
the most straightforward method isto usean .acf filewith the external ADAM S/Solver. Thefirst
part of the workshop will generate this .acf file.

Additional Applications 199

Workshop 14—Using ADAMS/Linear with ADAMS/Car...

Generating the .acf file

To generate the .acf file:

1
2

200

In ADAMS/Car, open MDI_Demo_Vehicle.asy.

From the Simulate menu, point to Full-Vehicle Analysis, point to Straight-Line Behavior, and
then select Acceleration.

Fill in the acceleration simulation dialog box with the following parameters:

o Output Prefix: linear_example
o End Time: 5

o Number Of Steps: 100

o Mode of Simulation: files_only

Specify files_only, because you do not need to run the simulation yet. This step is used
to simply set up the vehicle model and create the .adm, .acf, and .dcf files. Here,
ADAMS/Car will read in the property files and store the relevant datain the .adm file,
because if you submit an analysis through the interface in ADAMS/Car, the property
filesareloaded for you automatically. If you want to load the property files manually,
you can do this with View Commands (acar analysis read property_files).

o Road Data File: <shared>\roads.tbl\mdi_2d_flat.rdf
o Initial Velocity: 10 km/hr
o Start Time: 1

o Open-Loop Throttle

o Throttle Ramp: 10
o Gear Position: 2
o Steering Input: locked

Additional Applications

Workshop 14—Using ADAMS/Linear with ADAMS/Car...

4 Select OK.
ADAMS/Car displays the following message:

Reading in property files...

Reading of property files completed.

Setting up the vehicle assembly for Driving Machine maneuver...
Setup of vehicle assembly completed.

Writing assembly information to ADAMS/Solver dataset...
ADAMS/Solver files written successfully.

ADAMS/Car writes the files to your current working directory. To check where
ADAMS/Car saved thefiles, go to File --> Select Directory)

To set up your .acf file, you simply insert the LINEAR solver command after your analysis,
specifying whatever options you want (see the ADAM S/Solver documentation for
LINEAR). ADAMSwill linearize about the operating point (the states) that it sees at the end
of the analysis. For example, hereisthe .acf file you just created:

file/model=linear_example_accel
output/nosep

control/function=user(906,2,29,33,22,3,23,1)
|

stop
5 Edit thelinear_example_accel.acf file to include an eigensol ution.
Y our .acf file should look like:

file/model=linear_example_accel
output/nosep
control/function=user(906,2,29,33,22,3,23,1)

linear/eigensol
|

STOP

|
You are almost ready to run the linear analysis. First, you must make sure you save the
proper output file. To save your mode shape results, you have to turn on the results file
(.res), which isusually turned off for ADAMS/Car. To produce the resultsfile, you can do
thisin the Output Files dialog box by selecting Results File Contents (that is, Settings -->
Solver --> Qutput Files). In the window that appears, make sure that the Linear box is
checked.

Note: You must do this before you export the .adm file.

Alternatively, you can simply put the RESULTS/ statement at the end of your .adm file.

Additional Applications 201

Workshop 14—Using ADAMS/Linear with ADAMS/Car...

6

Edit the .adm file by putting the RESULTS/ statement at the end of the .adm file.

! ANALYSIS SETTINGS
|

INTEGRATOR/
, GSTIFF

, ERROR = 0.01
!

OUTPUT/

, REQSAVE

, GRSAVE

, NOPRINT

!

RESULTS/
END

Running the model with the external solver

To run the model with the external solver:

1

202

Enter your aliasto start ADAMS at your command line (for example, adams110, adams11).

Note: Aliasescan vary. The alias simply points to the mdi.bat file, so if you find no
adlias, run the mdi.bat file found in $install_dir/’common/mdi.bat.

To seethe ADAMS/Car options, enter acar.
To run the ADAMS/Car solver, enter ru-solver.

To enter your solver commands, enter linear_example_accel.acf.

Note: Make surethat thisfile and al others arein the directory in which you are running
ADAMS.

The simulation should start. It will produce output files, including the results file which has
the eigensolution output in it. Alternatively, you can submit the simulation directly by
entering:

o UNIX: adamsl1 -c acar ru-solver linear_example_accel.acf exit

o NT: adams11 acar ru-solver linear_example_accel.acf exit

Additional Applications

Workshop 14—Using ADAMS/Linear with ADAMS/Car...

Reviewing mode shapes in ADAMS/PostProcessor
To review mode shapes:

1 Open ADAM S/Postprocessor.
2 From the File menu, point to Import, and then select Analysis Files.

3 IntheFile Name text box, enter one of the three files, linear_example_accel.gra,
linear_example_accel.res, or linear_example_accel.req. Entering one will pick up al three,
based on the root name.

Y ou should see your vehicle model loaded into ADAM S/PostProcessor.
4 Right-click in the empty space around the model and select Load mode shape animation.
5 When you get a message that the animation will be deleted, select OK.

6 Review the mode shapes by entering the respective mode shape number of interest in the
Mode Number text box. To review the eigenvalues corresponding to the mode shapes,
select Table of Eigenvalues. For example, select mode 160, and use the play tool to animate
the mode shape. Y ou should see in the eigenval ue table that this mode has real and
imaginary values for the eigenvalue:

EIGEN VALUES (Time = 5.0)
FREQUENCY UNITS: (hz)
MODE UNDAMPED NATURAL DAMPING
NUMBER FREQUENCY RATIO REAL IMAGINARY
160 8.826190E+000 6.391413E-001 -5.641182E+000 +/- 6.788129E+000

Additional Applications 203

Workshop 14—Using ADAMS/Linear with ADAMS/Car...

Background information about ADAMS/Solver

Files in ADAMS/Solver

= ADAMS/Solver dataset files (.adm) - Statements define an dement of a model such
as apart, constraint, force, and so on.

» ADAMS/Solver command files (.acf) - Commands define an action that needs to be
taken during asimulation.

Simulations in stand-alone ADAMS/Solver
= Interactive
= Not scripted - Enter commands one by one
» Scripted - Use an ADAM S/Solver command file (.acf)

= Batch - Run multiple jobsin the background using an ADAM S/Solver command file
(acf).

Note: ADAMS/Solver command files must start with the name of the model to be analyzed
and must end with a STOP command.

Y ou can run simulations externally in ADAM S/Solver from within ADAMS/View.

204 Additional Applications

WORKSHOP 15—FuULL-VEHICLE ASSEMBLY

XX
I

X n) This workshop takes about six hours to complete.

Vil v
Vi VIV

Thisworkshop is intended to combine the knowledge you have attained throughout the course
and challenge your knowledge of different topics. The mgjor steps for this workshop are
described, but the exact steps are omitted. If you have questions, please refer to previous
sections or ask the instructor.

At this point, you should have the following templates done:

= MacPherson suspension (be sure to use the one you created rather than the one in the
shared database, because these have topological differences)

»« Rack and pinion
= Whed
Y ou should also have accessto _double_wishbone.tpl, which islocated in the shared database.

Before you build the assembly, you must create the body. Y ou then attach the front and rear
suspensions, together with the steering system, to the body. Y ou aso create appropriate
communicators.

Creating the body
To create the body:

= InTemplate Builder, open the template body_training.tpl, which you will get from the
instructor. Thistemplate has onerigid body that will act as the chassis.

Workshop 15—Full-Vehicle Assembly 205

Workshop 15—Full-Vehicle Assembly...

Creating and testing communicators

To create and test communicators:

1

10

11

206

Make sure the front suspension hooks up to the body. For the M acPherson suspension, you
have the following input communicators:

= Ci[lr]_strut_to_body mount
= Ci[lr]_subframe_to_body mount
= Ci[lr]_tierod_to_steering mount

The communicators of interest are strut_to_body and subframe_to_body, which are mount
communicators. Y ou must convey to the front suspension what part the upper strut should
attach to. In this caseit's the body, since that isthe only part in the chassis template.

Create a new output communicator of type mount, that will match the ci[lr]_strut_to_body,
by either entering the same name or entering the same matching name.

Edit the communicator for strut_to_body to have a matching name for subframe_to_body.

Test the communicators. Remember that you must have the templates open to be able to
test them.

Set up the steering and body template so that they will attach to each other. That is, make
sure that the steering column housing and rack housing are attached to the body. The rack
housing should really be attached to the suspension subframe, but since you don't have a
subframe for the MacPherson suspension, use the body instead.

Display the body template and create an output communicator of type mount single with
the name steering_column_to_body or with a matching name of the corresponding input
communicator in the steering template.

Modify the same single output communicator to include the matching name
rackhousing_to_body.

Test the communicators.

Make sure that the rear suspension hooks up to the body. Look in the ADAMS/Car
documentation: Help -> ADAMS/Car Guides -> Building Templates in ADAMS/Car -> Template
Descriptions -> Double-Wishbone Suspension.

Make sure that the strut attaches to the body. Thisis the same communicator you created
for the front suspension, so you don't have to create it again. It should passthe
information to both the front and the rear mount parts at the same time.

Workshop 15—Full-Vehicle Assembly

Workshop 15—Full-Vehicle Assembly...

12

13

14

15

16

17

18

19
20

Open the rear suspension template and go to Build -> Communicator -> Info, select Input and
Many, and then select mount.

Select OK.

ADAMS/Car displaysalist of all input communicatorsin the double-wishbone suspension
template.

Modify the left/right body communicator in the body to pass information to the
uca_to_body input communicator located in the double-wishbone suspension template.

Y ou must modify the left/right body communicator to include tierod_to_steering. If you
want this suspension to work as a steerabl e suspension, you must make sureit is attached
to the steering system. To keep the wheel s going straight, hook up the tierods to the body,
so then the wheelswon't turn.

Modify the single body output communicator to include the matching name
subframe_to_body for the doubl e-wishbone suspension.

These suspensions also need to pass on the information to what part the wheels should
attach to. Y ou must edit output communicators, in the suspensions, named
suspension_mount to include the matching name wheel_mount.

Remember to check thetest rig, SDI_testrig. There is one mount input communicator that
expects information from the body.

Test all the communicators for al the templates that you will use for the full vehicle.

When testing these communicators, you must specify what the templates’ minor roles
will be when you will build the subsystems. Assign minor roles to templates, as shown
next:

Template: Minor role:
.__MDI_SDI_TESTRIG any
._new_tire front
._hew_tire rear
._body_training any
._double_wishbone rear
._steer_training front
._macpherson front

Workshop 15—Full-Vehicle Assembly 207

Workshop 15—Full-Vehicle Assembly...

21 Thefollowing isalisting of the most important mount and location communicators for
thisworkshop. Y ou may usethisasaguideif you are having difficulties or would like to
check your work.

Listing of input communicatorsin _body_training:

Communicator Name: Class: From Minor Role: Matching Name:

(the body template shouldn’t need input communicators for this exercise)
' body_training’ contains:

0 input communicators of type ’location’

0 input communicators of type ‘'mount’

Listing of output communicators in’_body_training’

Communicator Name: Class: To Minor Role: Matching Name:

(need an output communicator of type mount to output the body part)
symmetry, matching names needed:

Ir, strut_to_body (macpherson, dwb)

Ir, subframe_to_body (macpherson)

s, subframe_to_body (dwb)

Ir, uca_to_body (dwb)

Ir, tripot_to_differential (dwb) (unless have powertrain template)
s, steering_column_to_body (rack and pinion)

s, rackhousing_to_body (rack and pinion)

s, body_subsystem (SDI_testrig)

' body_training’ contains:

0 output communicators of type 'location’

0 output communicators of type ‘'mount’

Listing of input communicators in’_new_tire’

Communicator Name: Class: From Minor Role: Matching Name:
1. ci[lr]_wheel_center location inherit wheel_center
2. ci[lr]_wheel_mount mount inherit wheel_mount

Should have matching name of "suspension_mount" for _macpherson template.
'_new_tire’ contains:

2 input communicators of type ’location’

2 input communicators of type 'mount’

Listing of output communicators in _new_tire’

208 Workshop 15—Full-Vehicle Assembly

Workshop 15—Full-Vehicle Assembly...

Communicator Name: Class: To Minor Role: Matching Name:

1

__new_tire’ contains:

0 output communicators of type ‘location’

0 output communicators of type ‘'mount’
Listing of input communicators in’_steer_final’

Communicator Name: Class: From Minor Role: Matching Name:

1. cis_rackhousing_to_body mount inherit rackhousing_to_body

Should connect to the body template. Alternatively, you could change this to connect the
rack housing to the suspension subframe. However, the macpherson template we created
does not have a subframe, so you would have to use another template to do this.

2. cis_steering_column_to_body mount inherit
steering_column_to_body

Should connect to the body template.

' steer_final’ contains:

0 input communicators of type ’location’

2 input communicators of type 'mount’

Listing of output communicators in’_steer_final’

Communicator Name: Class: To Minor Role: Matching Name:

1. co[lr]_tierod_to_steering mount inherit tierod_to_steering

Should connect to the macpherson template. Outputs the “rack” part.

(could create an output communicator of type location to locate the tierod to the end of the
rack; see KB 9182 for example of this)

Listing of input communicators in ’_macpherson’

Communicator Name: Class: From Minor Role: Matching Name:
1. ci[lr]_strut_to_body mount inherit strut_to_body
Should connect to the body template.

2. ci[lr]_subframe_to_body mount inherit subframe_to_body
Should connect to the body template.

3. ci[lr]_tierod_to_steering mount inherit tierod_to_steering

Should connect to the rack and pinion template.
(could create input communicator of type location to locate the tierod to the end of the rack;
see KB 9182 for example of this)

__my_mac’ contains:
0 input communicators of type ’location’
6 input communicators of type 'mount’

Workshop 15—Full-Vehicle Assembly 209

Workshop 15—Full-Vehicle Assembly...

Listing of output communicatorsin _macpherson:

Communicator Name: Class: To Minor Role: Matching Name:
1. co[lr]_wheel_center location inherit wheel_center
Outputs the location to the wheel template.

2. co[Ir]_suspension_mount mount inherit suspension_mount

Should have matching name of "wheel_mount" for wheel template. Outputs the "hub" part.
'_my_mac’ contains:

2 output communicators of type ’'location’

2 output communicators of type ‘'mount’

Listing of input communicatorsin _double_wishbone:

Communicator Name: Class: From Minor Role: Matching Name:

1. ci[lr_ARB_pickup location inherit arb_pickup

Don't worry about this one since we don't have an ARB.

2. ci[lr]_strut_to_body mount inherit strut_to_body

Body template needs to have an output communicator with itself as the output part.
3. ci[lr]_tierod_to_steering mount inherit tierod_to_steering

Body template needs to have an output communicator with itself as the output part in order
to fix the steering in the rear.

4. ci[lr]_tripot_to_differential mount inherit tripot_to_differential

This should be connected to the body, as above. However, when adding a powertrain, the
body communicator should be removed.

5. ci[lr]_uca_to_body mount inherit uca_to_body
Body needs output communicator with itself as the output part.
6. cis_subframe_to_body mount inherit subframe_to_body

Body needs output communicator with itself as the output part.
' _double_wishbone’ contains:

2 input communicators of type ’location’

9 input communicators of type 'mount’

210 Workshop 15—Full-Vehicle Assembly

Workshop 15—Full-Vehicle Assembly...

Listing of output communicatorsin _double_wishbone:

Communicator Name: Class: To Minor Role: Matching Name:

1. co[lr]_tripot_to_differential location inherit tripot_to_differential

You don't need to worry about this one. This will tell the powertrain where to locate itself
if you use one.

2. co[lr]_wheel_center location inherit wheel_center

This feeds the wheel center communicator in the wheel template.

3. co[lr]_arb_bushing_mount mount inherit arb_bushing_mount
You don't need to worry about this one since we don't have an ARB.

4. co[lr]_droplink_to_suspension mount inherit droplink_to_suspension

You don’t need to worry about this one since we don’t have an ARB.

5. collr]_suspension_mount mount inherit suspension_mount
Should have matching name of "wheel_mount" for wheel template. Outputs the "spindle"
part.

6. co[lr]_suspension_upright mount inherit suspension_upright

Don't worry about this one. Outputs the "upright" part.

7.cos_engine_to_subframe mount inherit engine_to_subframe

Don’t worry about this one.

8. cos_rack_housing_to_suspension_subframe mount inherit

rack_housing_to_suspension_subframe

You may want to hook this up to your rack housing in your rack and pinion template if you
want to hook the rack housing to the subframe. Otherwise, just connect the rack housing
to the body, which is probably simpler in this case. Outputs the "subframe" part.

' _double_wishbone’ contains:

4 output communicators of type 'location’

10 output communicators of type ‘'mount’

Workshop 15—Full-Vehicle Assembly 211

Workshop 15—Full-Vehicle Assembly...

22
23

24

25
26
27
28

212

Listing of input communicatorsin __MDI_SDI_TESTRIG:

Communicator Name: Class: From Minor Role: Matching Name:
cis_body_subsystem mount inherit body_subsystem
' _MDI_SDI_TESTRIG’ contains:

0 input communicators of type ’location’

1 input communicator of type ‘'mount’

Create new subsystems for al templates.

Create a new full-vehicle assembly with the new subsystems you just made. Make sure
that none of the critical communicators appear in the warning message about unmatched
communicators.

Adjust the different subsystems so they appear in the right location relative to each other.
Shift the front and the rear suspensions by this amount:

Front suspension aft 250 mm
up 230

Rear suspension aft 2800 mm
up 37.3 mm

View only the double-wishbone suspension.
From the Adjust menu, select Driveline Activity.
Set Current Mode to Inactive.

Run afull-vehicle steering analysis.

Workshop 15—Full-Vehicle Assembly

A EXAMPLE ANALYSES

This appendix provides a basic outline of how you can use ADAMS/Car to
analyze your vehicle.

What's in this appendix:

Types of Analyses, 214

Gather Data for the Model, 215
Packaging Analysis on Suspension, 216
Kinematic Analysis on Suspension, 217
Suspension-Compliance Analysis, 219
Static-Loading Durability Analysis, 220
Dynamic-Loading Durability Analysis, 222
Front Suspension Analyses, 223

Full-Vehicle Design and Analysis, 224

213

Types of Analyses

Below is a list of analyses that you can perform ADAMS/Car:
= Packaging analysis on suspension
= Kinematic analysis on suspension
= Suspension-compliance analysis on suspension
= Static-loading durability analysis on suspension
= Dynamic-loading durability analysis on suspension

= Full-vehicle design and anaysis

In the following pages, a guide is given to perform these analyses.
This guide only lists a subset of the analyses available in
ADAMS/Car. Moreover, some additional modules may be
necessary for the analyses listed (for example,
ADAMS/Durability). For more information on a particular analysis,
see the documentation.

214 Example Analyses

Gather Data for the Model

Collect the data necessary to generate an ADAMS model of the
proposed suspension concept. After you've collected the data from
various sources (CAD data for geometry, bushing data from
internal testing facilities or from bushing supplier, shock data,
and so on), you can create an ADAMS/Car model.

Example Analyses 215

Packaging Analysis on Suspension

Once you've created the ADAMS model, you put the virtual
suspension on a virtual test fixture (standard part of
ADAMS/Car) and run through a series of events to examine
packaging and interference issues. The goal of this analysis is to
show that parts do not collide during jounce and roll travel.

Also, if body geometry is available, be able to demonstrate that
tire and wheel well clearances conform to corporate standards.
The goal of this phase of the analysis is to give a cursory check
of the part collisions within the ADAMS/Car environment.

Further investigations are possible by bringing the ADAMS results
for the wheel envelope during maximum jounce/rebound/roll travel
intfo your CAD package. You can use the solid geometry of the
wheel envelope in your CAD package to easily find clearance
issues, and to better visualize the total wheel envelope needed by
your suspension concept.

216 Example Analyses

Kinematic Analysis on Suspension

After you've analyzed the suspension packaging issues, put the
virtual suspension on a virtual test fixture and run through a
series of events to understand the kinematic properties of the
suspension. Two analyses help you understand the suspension
kinematics: parallel wheel travel (wheels moving vertically in
phase) and roll travel (wheel moving vertically out of phase).

1. The parallel wheel travel analysis (also called the ride travel
event) examines the following suspension metrics:

= Toe (also called bump steer)
« Caster

» Camber

» Longitudinal recession

= Lateral recession

Wheel rate (vertical force from suspension springs versus amount of suspension vertical
deflection)

2. The roll travel analysis examines the following suspension
metrics:

= Roll steer (degrees of toe per degree of suspension roll)

= Roll stiffness

Example Analyses 217

Kinematic Analysis on Suspension...

The goal of the kinematic analysis is to tune the geometry of the
suspension to attain satisfactory kinematic behavior. If kinematic
issues arise, design recommendations can then be made to the
location of suspension joints and bushings, the lengths of the
control arms, and other geometric properties that affect the
kinematics of the suspension.

Also, suspension spring properties can be examined to be sure
that the overall vehicle requirements will be met for suspension
springs during ride and roll. Use of additional suspension
components such as an anti-roll bar can be examined, including
recommendations about the sizing for the anti-roll bar.

218 Example Analyses

Suspension-Compliance Analysis

After you analyze the suspension geometry and the design shows
good kinematic behavior, you can examine suspension compliance.
The virtual suspension model will be placed on the suspension test
rig and run through the compliance analysis (for example, static
loading). The following metrics are generated with this analysis:

= Latera force versustoe (for both parallel and opposing lateral force)

= Latera force versus camber (for both parallel and opposing lateral force)

= Latera force versuslateral displacement (for both parallel and opposing lateral force)
= Longitudinal force versus toe (braking and acceleration forces)

= Longitudinal force versus longitudinal displacement (braking and accel eration forces)

= Aligning torque versus toe (parallel and opposing torques)

The goal of the suspension compliance analysis is to tune the
suspension bushings such that adequate suspension compliance is
attained. Note that ball joints are not infinitely stiff, and they
do factor in to the suspension performance. Thus, it may be a
good idea to replace idealized ball joints in your model with
bushing representations.

Example Analyses 219

Static-Loading Durability Analysis

The next step in analyzing the suspension is to apply static
loadcases to the wheels in ADAMS/Car and examine the resulting
loads of the suspension elements (suspension bushings, suspension
Sﬁrings, and so on). This contributes to a better understanding of
the durability of the suspension.

Typically, a set of requirements for static loads are used which
take the form of a worst case loading condition that a suspension
must withstand. These loading conditions (or loadcases) take the
form of number of g's of loading. For example, a suspension
requirement might be that it must withstand 3 g's of vertical
load, 2 g's of longitudinal load, and 1 g of lateral load. Such a
loading condition is often referred to as a "321 g" loadcase.

The use of "g's" describes the total vehicle weight, divided by the
front to rear load distribution. In this way, a loadcase

requirement in "g's" of load can be used across different vehicles
of various sizes and weights.

The goal of the loadcase analysis is to give the design and FEA
analyst a report which shows the worst case loading on each of
the suspension components (control arm, bushings, spring, and so
on). This data can then be fed into a FEA model of the component
(bushing, control arm, spring, and so on) to show that the
component will withstand a given amount of static loading. A
structured report will be generated through the use of the
loadcase postprocessor which will show the amount of loading on
the suspension elements, and using this report the loading data
can be imported into the FEA software (NASTRAN, ANSYS,
ABAQUS, and so on).

220 Example Analyses

Static-Loading Durability Analysis...

It is rare that the design engineer can have access to this level
of data early in the program, so the static loadcase analysis
provides the first insight to real-world loading conditions for the
parts. This method is coarse and does not provide the final
answer to the durability requirements of the suspension
components, but early in the design and analysis, this information
is extremely valuable.

Example Analyses 221

Dynamic-Loading Durability Analysis

After the static durability analysis is completed, a more intensive
investigation into the rubber mounts begins. In this phase, a road
profile will be assumed for the suspension (for example, a pothole,
or random white noise road input) and utilized on a virtual four-
rosf shaker event within ADAMS/Car. The ADAMS dynamic
oading histories of the mounts will then be imported into FEA
software for final structural analysis.

222 Example Analyses

Front Suspension Analyses

Besides the analyses already listed, specific to the front
suspension, steering system metrics will also be examined to
understand the overall steering ratio, steering linearity,
Ackerman, and steering column universal joint phasing (ensure that
the steering feel is not lumpy).

Example Analyses 223

Full-Vehicle Design and Analysis

Once the rear suspension, front suspension, and steering system
subsystems have been modeled in ADAMS/Car, the next stage of
the Functional Digital Car process is to analyze the full-vehicle
behavior. Because the various suspension subsystem models have
been developed in the earlier stages of the plan, it will be a
simple matter to assemble these subsystems into a full-vehicle
ADAMS/Car model.

This ADAMS/Car model will be driven on a set of virtual test
tracks to understand various full vehicle metrics. Example test
analyses would be:

= Static vehicle trim analysisto trim the vehicle to a particular ride height

= Doublelane change (Moose Test) to examine rollover propensity in an accident-
avoidance maneuver

= Constant radius to examine understeer/oversteer behavior of the vehicle and generate
an understeer budget report

= Brakedrift to examine amount of lateral drift during a moderate-braking maneuver

= Brakein aturn to examine dynamic braking and turning stability issues

Example test events:

= Step steer to examine lateral acceleration and yaw rate overshoot during highly
dynamic maneuver

= Frequency response to examine vehicle dynamics metrics in the frequency domain

= Dynamic durability to determine the behavior of the vehicle asit drives over potholes,
bumps, and other three dimensional road obstacles

224 Example Analyses

B FOUR-POST VERTICAL EXCITATION TEST

Thistutorial teaches you how to work with custom ADAMS/Car test rigs,
custom simulation procedures, and how to create a private ADAMS/Car
binary.

Y ou will work with an existing test rig created in ADAMS/Car Template
Builder. Thistutorial will overview theinternal workings of the test rig, cover
the steps used in making it, and then detail how to edit it and create a custom
ADAMS/Car binary containing the test rig.

To go through this tutoria, you must have access to the six four-post test rig
model, macro, and interface files: acar_build.cmd, acme_3PostRig.cmd,
acme_four_sim.cmd, macros_ana.cmd, mac_ana_ful_fou_sub.cmd, and
acme_4PostRig.cmd.

What's in this appendix:
= Introduction, 226
= Creating a test rig template in ADAMS/Car, 230
= Preparing to create a private binary, 239
= Creating an assembly using the test rig, 243

= Adding custom analysis procedures to ADAMS/Car, 247

225

Four-Post Vertical Excitation Test...

Introduction

ADAMS /Car =l

File Edit ‘“iew Adust Simulate RBewiew Settings Tools Help

The objective of this exercise isto investigate the vertical dynamics of the full vehicleand its
suspension systems. The test results can be postprocessed in the frequency domain to study the
damped natural frequencies of various ride modes and their respective damping levels.
Additional insight can also be gathered into the influences of the vehicle's vertical dynamics
effects on handling behavior by gaining afurther understanding of system dynamic responses
including:

« Front to rear modal balance

= Suspension to body transfer function gain and phase
= Suspension to tire transfer function gain and phase

= Tirecontact patch vertical load variation

Thetestisconducted by assembling astandard full-vehicle model to aspecial four-post test rig.
Thetest rig is simply defined by four parts representing the tire pads that support the vehicle.
These tire pads are constrained to movein only the vertical direction and a displacement
actuator (motion controller) controlstheir vertical motion. The only constraint between the pads
and the vehicle'stiresisthefriction of thetireitself. Because the Delft tire model supports zero
velocity tirefriction, thisisall that is required to constrain the vehicle during the dynamic
portion of the simulation.

226 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Thevertical actuatorsare each controlled by an analytical function. The analytical functionsare
used to describe the displacement profil e of the actuator in the time domain and they arelimited
to constant amplitude sinusoidal input that sweeps over a predetermined frequency rangein a
set amount of time. When using the analytical function control there exist four excitation modes
described below:

= Heave: al tire pads move vertically in phase.
= Pitch: the front tire pads move 180 degrees out of phase with the rear tire pads.
= Roll: the l€eft tire pads move 180 degrees out of phase with the right tire pads.

= Warp: the left-front and right-rear tire pads move 180 degrees out of phase with the
right-front and left-rear pads.

Test rig description

The four-post test rig was created in DR

ADAMS/Car Template Builder andis | Zetien 2ue_semm o ler
named __acme_4PostRig.tpl. What
followsis abrief description of how it
worksand how it relatesto the standard
ADAMS/Car simulation types.

The major role of the four-post test rig
templateisanalysis andit containsfour
general parts. There are four tire pads
and four actuators for each of the
vertical trandation joints on each pad.
Thelocation of al of the padsand their
respective constraints, actuators, and A ekt
SO on, are parameterized in the ground
plane (X and Y) to awheel center location communicator that comes from the suspension
systems. Thevertical location is parameterized to the Z location of the std_tire_ref marker. The
std_tire_ref marker hasits Z height set automatically during the assembly process so that it
represents the vehicles average tire contact patch height.

Four-Post Vertical Excitation Test 227

Four-Post Vertical Excitation Test...

User input requirements: simulation description

The analysis input parameters are grouped in two categories. one group of parametersis
common to all analyses, while the other group consists of input specific to this four-post test.
The four-post simulation input requirements are controlled by the user in order to define the
boundary conditions of the desired vertical excitation test.

Always required:
= Output Prefix
« EndTime
= Number of Steps
= Typeof Analysis (Interactive, Background)
= AnaysisLog File(Yes, No)
Four-post simulation input requirements:
= Peak Displacement
= Displacement Units (m, mm, inch, and so on)
= Freguency Range (Units hardcoded to Hz)
= Excitation Mode (Heave, Pitch, Roll, Warp)

Assembly and simulation process requirements

The following steps outline what the test rig simulation process is doing internally after a
simulation has been requested. The vehicle/test rig assembly processis similar regardless of the
user input parameters outlined in the previous section of the document. However, the
maodifications made to the assembled model will vary depending on these parameters.

Assembly process.

1 Same subsystem level check asin any full-vehicle maneuver with possibly an extra check
to ensure there are no more then four wheels and two suspensions.

2 Assemble vehicle with test rig. Location communicators will locate the padsin the X and
Y plane.

228 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

3 Loop over thetires and reassign the GFORCE reference markers to the appropriate
respective pad. The left front tire's reference marker needs to belong to the gel_front_pad
part of thetest rig for example.

4 Assignthe Z location of the std_tire_ref marker based on the average contact patch
location of all of the tires (the same asit is donein afull-vehicle simulation).

5 Setthetire property file to a hardcoded value of mdi_2d_flat.rdf for each of thetires
without generating any road geometry.

6 Modify the actuator’s (jmf_left_front_actuator, jmf_right_front_actuator, and so on)
analytical functions according to the user input data:

The following functions need to be assigned to each actuator based on the analytical drive
signal:

Left Front = LF_phase*Peak_Amplitude*sin(1/2*360D*Freq_Range/End_Time*Time**2)
Right Front = RF_phase*Peak Amplitude*sin(1/2*360D*Freq_Range/End_Time*Time**2)
Left Rear = LR_phase*Peak_Amplitude*sin(1/2*360D*Freq_Range/End_Time*Time**2)
Right Front = RR_phase*Peak_Amplitude*sin(1/2*360D*Freq_Range/End_Time*Time**2)
Where the following values are assigned to the phase variables:
= HeaveMode: LF_Phase, RF Phase, LR _Phase, RR_Phase= 1.0
= PitchMode: LF_Phase, RF_Phase=1.0& LR_Phase, RR_Phase=-1.0
= Roll Mode: LF_Phase, LR _Phase = 1.0 & RF_Phase, RR_Phase=-1.0
= WarpMode: LF_Phase, RR Phase = 1.0 & RF_Phase, LR Phase=-1.0
Thetest rig then goes through the following simulation process:

= Submit the simulation to the solver using asimilar process as the full-vehicle
simulation. The simulation needs one static equilibrium, an initial velocity = 0.0, and
then a dynamic simulation equal to the end. The hmax on the integrator should also
be set to at least 1/10 of the maximum frequency range. For example, if the frequency
range set by the user is 20Hz then the hmax should be 1/10* 1/20 = 1/200 (0.005).
Thisis necessary to avoid aiasing of theinput during the simulation.

Four-Post Vertical Excitation Test 229

Four-Post Vertical Excitation Test...

Creating a test rig template in ADAMS/Car

A minimum prerequisite for the task of adding atest rigto ADAMS/Car is athorough
understanding of all aspects of ADAMS/Car Template Builder. It is very important that users
attempting to create test rigs in ADAMS/Car have afirm understanding of the concepts of
communicators and actuators. Y ou should reference the guide, ADAMS/Car Templates as you
work through this section. It might also be beneficial to examine the test rigs that are included
in standard ADAMS/Car.

Atestrigin ADAMS/Car isamost completely comparableto atemplatein ADAMS/Car. Test
rigs differ from templates mainly because test rigs contain actuator elements, such as motions
and forces, to excite the assembly.

The procedure for creating atest rig template in ADAMS/Car isjust like the procedure of
creating anormal template, with afew differences. The stepsfor creating atest rig template are:

= Creating atest rig template
= Saving thetest rig template
« Modifying the test rig template

Getting started

A testrig templateis created in the template builder in ADAMS/Car. Like aregular template, a
test rig template can contain parts attached together via attachments and forces. Unlike most
templates, the test rig template will also contain actuators to excite the system. The test rig
template, like normal templates, will also contain communicators to enable the exchange of
information with other templates.

Because templates and test rigs are so similar, it would be redundant to fully describe how to
create test rigs. Instead, see the guide, ADAMS Car Templates for specific information about
building templates and communicators.

ADAMS/Car works with test rigs as templates. However, in order to incorporate atest rig for
use on an assembly, the test rig must be converted to atest rig model file (.cmd) and a private
ADAMS/Car binary created. Y ou can, of course, create a new test rig template from the
ADAMS/Car interface very easily, but it is often best to work with existing templatesin order
to better understand the capabilities of ADAMS.

Y ou start by modifying an existing test rig model file (.cmd) in the template builder. Start by
locating thefileacme_3PostRig.cmd. Thisisatest rig model file (.cmd) that contains atest rig
currently equipped with three active posts.

230 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Loading a test rig model file (.cmd) into the ADAMS/Car Template Builder

If you want to open an existing test rig model (.cmd) file and edit it using ADAMS/Car
Template Builder, follow the steps outlined in this section. Try these steps out on the
acme_3postrig.cmd file. Note that you should be careful if using aprivate or site ADAMS/Car
binary when editing atest rig template. If you already made atest rig and a private binary
incorporating it, you cannot edit the test rig of the same name.

To load a test rig model file:

1 Movethetest rig model file, acme_3postrig.cmd file, to your private car database under the
templates table (for example, C:\private.cdb\templates.tbl\).

2 Renamethefile from acme_3postrig.cmd to __acme_4PostRig.tpl.
3 Openthefilein atext editor.
4 Insert the header asfollows:

= Note that the template name must match the file name exactly (excluding the
extension).

= Notethat thereisavariable called "date" inside the acme_4postrig.cmd file. This
must be set to the same date as the header:

$ MDI_HEADER
[MDI_HEADER]

FILE_TYPE = ‘tpl

FILE_ VERSION = 13.4

FILE_FORMAT = 'ASCII

HEADER SIZE =9

(COMMENTS)

{comment_string}

’ADAMS/Car analysis template’

$ TEMPLATE_HEADER
[TEMPLATE_HEADER]

TEMPLATE_NAME= '__acme_4PostRig’

MAJOR_ROLE = ’analysis’
TIMESTAMP = '1998/08/28,09:23:05’
HEADER_SIZE =6

Four-Post Vertical Excitation Test 231

Four-Post Vertical Excitation Test...

5

Thereisavariableinside the acme_4postrig.cmd file called model_class. Search for
model_class. Change this variable assignment to look like the following (this variable
must be set to template for Template Builder to use it):

variable create &
variable_name
string_value

comments
|

.__acme_4PostRig.model_class &
"template” &
"Memory for ADAMS/Car model class"

Opening the test rig in ADAMS/Car Template Builder

Thefilethat you just specified asan ADAMS/Car template contains amodel of atest rig with
only three active posts. In this section, you activate the fourth (Ieft-front) post.

To open the test rig:

1

232

Make sure that your .acar.cfg file specifies you as an expert user so you can start the
ADAMS/Car Template Builder.

Start ADAMS/Car and select the template-builder mode at the prompt.
From the File menu, select Open.

Right-click the Template Name text box, point to Search, and then select <private>/
templates.tbl.

Select the __acme_4PostRig.tpl template file, and then select OK twice.

Make sure icon visibility is on, the view is set to Front Iso and the view is zoomed to fit.

Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Modifying the test rig in ADAMS/Car Template Builder

To make the actuator active, you will add a variety of items to the test rig: a bumpstop, a
reboundstop, ajoint attachment, a joint motion actuator, and ajoint force actuator.

To add a bumpstop:

1
2
3

From the Build menu, point to Bumpstop, and then select New.
In the Bumpstop Name text box, enter front_extension_stop.

Specify the | Part as gel_front_pad by typing it in or by right-clicking the text box, pointing
to Part, selecting Pick, and then choosing the part gel_front_pad.

Specify the J Part as ground by right-clicking the text box, pointing to Guesses, and then
selecting ground.

Specify the | Coordinate Reference as cfl_Front_Actuator_Base.
Specify the J Coordinate Reference as cfl_Front_Pad.

Ensure that the Property File text box specifies <shared>\bumpstops.tbl\mdi_0001.bum as the
property file.

In the Clearance text box, enter 127.
Select OK.

Note that because of symmetry relations, not only is a bumpstop immediately created on
the left front actuator base, but oneis aso created on the right front.

To create a reboundstop:

N

~N o o b~ W

From the Build menu, point to Reboundstop, and then select New.

In the Reboundstop Name text box, enter front_retract_stop to enforce a consistent naming
convention.

Set | Part to gel_front_pad.

Set J Part to ground.

Set | Coordinate Reference to cfl_Front_Actuator Base.

Set J Coordinate Reference to cfl_front_pad.

Ensure that the Property File text box points to <shared>\reboundstops.tbl\mdi_0001.reb.

Four-Post Vertical Excitation Test 233

Four-Post Vertical Excitation Test...

In the Clearance text box, enter 127.
Select OK.

Note that because of symmetry relations, not only isareboundstop immediately created on
the left front actuator base, but oneis aso created on the right front.

To add an attachment between the actuator pad and actuator base:

© 00 ~N o 0o »~ w N

=
N PO

13

From the Build menu, point to Attachments, point to Joint, and then select New.
Specify the Joint Name as left_front_pad.

Specify thel Part as ground.

Specify the J Part as gel_front_pad.

Set the Type to single.

Set Joint Type to translational.

Set Location Dependency to Delta location from coordinate.

Set Location Coordinate Reference to cfl_front_pad.

Set Location t0 0,0,0 in local.

Set Orientation Dependency to Delta orientation from coordinate.
Set Construction Frame to cfl_front_pad.

Set Orientation t0 0,0,0.

Select OK.

To make the joint motion actuator:

~N o g b~ w NP

234

From the Build menu, point to Actuators, point to Joint Motion, and then select New.
Specify the Actuator Name as left_front_actuator to enforce consistent naming.
Specify the joint asjostra_left_front_pad by picking the joint you just created.

In the Application text box, enter pad_excitation.

In the Identifier text box, enter left_front_actuator.

In the Function text box, enter 15*sin(720d*time).

Specify the Time Derivative as displacement.

Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

8 Set the Force Limits to -5e4,5e4.

9 Set the Displacement Limits to -1000,1000.
10 Set the Velocity Limits to -1e4,1e4.

11 Set the Acceleration Limits to -9.8e4,9.8¢e4.
12 Inthe Units text box, enter mm.

13 Select OK.

To make the joint force actuator:

1 From the Build menu, point to Actuators, point to Joint Force, and then select New.

2 Specify the Actuator Name as If_force_actuator.

3 Pick the Joint asjostra_left_front_pad.

4 Inthe Application text box, enter Left front actuator force.

5 Inthe Identifier text box, enter Left front actuator force.

6 IntheFunction text box, right-click and point to Function Builder.

7 Pastethe following into the text box:
(STEP(TIME,0,1,0.002,0)*
(1e5)*VARVAL(If_actuator_disp))
+STEP(VARVAL(If_actuator_vel),-pvs_Friction_Saturation_Velocity,
-pvs_Friction_Saturation_Force,pvs_Friction_Saturation_Velocity
,pvs_Friction_Saturation_Force)
-VARVAL(If_actuator_force)

8 Select OK.

Four-Post Vertical Excitation Test 235

Four-Post Vertical Excitation Test...

Saving the test rig template

Thetest rig template is saved to afile just like aregular template. The test rig template should
besavedinan ASCII format to facilitate the modificationsthat are required and described in the
next section. Storing the templatein ASCI| format al so ensures portability from one machineto
another. It allows, for example, the samefile to be used when building a site binary on either a
UNIX or NT machines.

To save the template:

1 From the File menu, select Save.

2 Makesurethefile format is set to ASCII, and that Zero Adams Ids is selected.
3 Select Close Template.
4

Select OK, don't save a backup copy when prompted.

Making a test rig model file (.cmd) from an ADAMS/Car template

Y ou must manually modify the file of the test rig template to make it into atest rig model file
(.cmd). There are two modificationsthat you must do to the ASCI| templatefile generated from
ADAMS/Car.

If you want to take atest rig built in the template builder and then use it asatest rig, you should
basically perform the stepsin Loading a test rig model file (.cmd) into the ADAMS/Car Template
Builder on page 231 in reverse order:

To make a test rig from a template:

1 Outside of ADAMS/Car, from your private database, copy the file __acme_4PostRig.tpl
from the templates.tbl table to your private directory (C:\acar_private) or another directory.

2 Renamethefileto acme_4PostRig.cmd.

3 Using atext editor, open acme_4PostRig.cmd.

236 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

4 Thereisavariableinside __acme_4PostRig.tpl named model_class. Change this variable
assignment to look like the following (this variable must be set to test rig in order for it to
be used as one):

variable create &
variable_name =.__acme_4PostRig.model_class &
string_value = "testrig” &
comments = "Memory for ADAMS/Car model class"

|

5 Remove the header information that is added at the beginning of the ASCII templatefile.
This header must be removed because the command file reader will not understand the
information stored in this header and will output errors. A typical header from an ASCII
was shown in Loading a test rig model file (.cmd) into the ADAMS/Car Template Builder
on page 231.

6 Removeall thelinesfrom the beginning of the file up to and including the line containing
the HEADER_SIZE attribute.

7 Savethefile

ADAMS/View variables required in a test rig

Templates and test rigsin ADAMS/Car have information that is stored in ADAMS/View
variables to determine how the template is used. All templates, including test rigs have three
required variables: major role, minor role, and model class. Test rigs have an additional
ADAMS/View variable named assembly class.

All the variables required in atest rig are described below. The first three variables: role,
minor_role, and model_class are all created automatically when thetest rig templateis created.
Y ou must manually create the variable testrig_class, which is unique to test rigs, as described
above.

Major role

The major role of ADAMS/Car templates and test rigsis stored in an ADAMS/View variable
named role. The major role of atest rigis aways analysis. When creating atest rig in
ADAMS/Car, it isimportant to ensure that this value is set properly.

variable create &

variable_name =.__acme_4PostRig.role &
string_value = "analysis" &

comments = "Memory for ADAMS/Car major role"

Four-Post Vertical Excitation Test 237

Four-Post Vertical Excitation Test...

Minor role

The minor role of ADAMS/Car templates and test rigsis stored in an ADAMS/View variable
named minor_role. The minor role of atest rig istypically any. Setting the minor roleto any is
extremely important if you are designing atest rig that is supposed to work with other
subsystems that can have different minor roles. For example, asuspension test rig should work
with either front, rear, or trailer type suspensions. If the minor role of the test rig is defined as
any in this case, the communicators will not hook up properly between the test rig and
suspension subsystem.

variable create &

variable_name =.__acme_4PostRig.minor_role &
string_value = "any" &

comments = "Memory for ADAMS/Car minor role"

Model class

Every model in ADAMS/Car has a specific model class. The model class of amodel is stored
inan ADAMS/View variable named model_class. Thisvariableisautomatically created at the
time the model is created. Currently, in ADAMS/Car, there are four model classes defined:
template, subsystem, test rig, and assembly.

variable create &

variable_name =.__acme_4PostRig.model_class &
string_value = "testrig" &

comments = "Memory for ADAMS/Car model class"

Testrig class

All test rigsin ADAMS/Car can be associated with a particular class of assembly. For example,
the__MDI_SUSPENSION_TESTRIG test rig isassociated with suspension assemblies. Thetest
rig class of atest rigis stored in an ADAMS/View variable called testrig_class.

variable create &

variable_name =.__acme_4PostRig.testrig_class &
string_value = "full_vehicle" &

comments = "Memory for ADAMS/Car testrig class”

Thetestrig_class variable is used directly in the graphical user interface. For example, this
variable is used in the new suspension assembly and new full-vehicle assembly dialog boxes.
These two dialog boxes each contain an option menu from which you select the test rig to be
included in the new assembly. This option menu will only contain test rigs that are compatible
with that class of assembly. The option menu on the new suspension assembly dialog box, for
example, will only list thosetest rigs that have atest rig class of suspension.

238 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Preparing to create a private binary

Y ou can now add both your new test rig model file acme_4PostRig.cmd) and the macro files
attached to thistutorial to build acustom private ADAM S/Car binary which canimplement this
new test rig. The process of creating private and site binary filesis outlined next:

1 If the directory does not exist, create adirectory C:\acar_private (ADAMS always |ooks
for this when running a private binary).

2 Inthisdirectory, copy thefive attached ACSII filesinto C:\acar_private:

acar_build.cmd
acme_4postrig.cmd
macros_ana.cmd
mac_ana_ful_fou_sub.cmd

acme_four_sim.cmd

A description of each of these follows:

acar_build.cmd

Thisisthe file upon which ADAMS will call when building a private binary. In generd, this
file contains any commands to:

modify the ADAMS car interface

import the test rig model files

add libraries (which show up in the command navigator)
add macros

aswell as some standard commands which should be in any acar_build.cmd file

Reproduced below is the text of the acar_build.cmd file:

I---- Create custom libraries for storage ----
library create library_name=.ACME
library create library_name=.ACME.macros

Thetwo lines above create specia storage for all the acme macros that will be created.

Four-Post Vertical Excitation Test 239

Four-Post Vertical Excitation Test...

I---- Read analysis macros and model ----

file command read file="C:\acar_private\macros_ana.cmd"
file command read file="C:\acar_private\acme_4postrig.cmd"
file command read file="C:\acar_private\acme_four_sim.cmd"

It is now necessary for acar_build.cmd to call upon any other files that are desired for building
acustom binary. In this case, we will call upon three other cmd files (described later in this
document). Notethat thesefiles location is hard-coded into the acar_build.cmd file. The rest of
this command file consists of standard commands to undisplay items:

I---- Standard command to undisplay model
model display model=(NONE)

I---- Standard Command for Message Box
interface dialog execute &
dialog_box_name=.gui.msg_box &
undisp=yes

acme_4PostRig.cmd

Thisfile contains the test rig model file (.cmd) that you just created. Thistest rig model will be
imported into your private binary and now be available to any future assemblies.

macros_ana.cmd

Thisfile serves as a pointer to mac_ana_ful_fou_sub.cmd. It contains a hard-coded file
location. It is good practice to use pointerslike this rather than to import the simulation macros
themselves. This allows for easy modification.

mac_ana_ful_fou_sub.cmd

Thisisamacro that instructs ADAMS/Car on how to simulate the model. Thisfileis discussed
in depth in Adding custom analysis procedures to ADAMS/Car on page 247.

acme_four_sim.cmd

Thisisacustom dialog box modification, which also adds a special Acme Four Post Simulation
item under the Tools menu. Thiswas built with atext editor, and is commented. The commands
that make the menu items appear at the end of thefile. It iseasy to create your own dialog boxes
and menus, but it is often helpful to have afile like this for reference.

240 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Adding the four-post analysis to a private binary

To create the private binary:
= From the Start menu, point to Run ADAMS 11.0, point to ADAMS/Car, point to Advanced,
and then enter cr-privatebin at the prompt.

Running ADAMS/Car with a private binary

To run ADAMS/Car with your private binary:

1 From the Start menu, point to Run ADAMS 11.0, point to ADAMS/Car, point to Advanced, and
then enter ru-private at the prompt.

2 You could also create a shortcut to this containing the path: C:\Program Files\ADAMS
11.0lcommon\mdi.bat acar ru-private.

Note: When you want to build a binary with asecond test rig later, you will have to make
surethat acar_build.cmd calls both your new files and these old files!

Four-Post Vertical Excitation Test 241

Four-Post Vertical Excitation Test...

Interfaces

||+ =cax
1l - =cme
' - analysis
- full_wehicle
- four_post
submit

analysis
animation
azssembly

Help |

Theeasiest way totest thefour-post analysismacro isto accessit from the Command Navigator.
The command to beissued isthe user_entered_command specified in the acar_build.cmd file
shown above. When you access the four-post macro from the Command Navigator,
ADAMS/Car automatically creates a graphical user interface (or dialog box) based on the
parameters in the macro. Y ou can use this dialog box to execute the macro and submit the

four-post analysis:

Aszembly

Qutput Prefix

End Time

Mumhber Of Steps

242

!
Comment |

!

|

Analysis Mode Iinteractive j
Peak Dizplacement |
Units [|
Frequency Range |
Excitation hode Iheave j
Load Results |yes j
éBna Jort =
Log File |yes j
Error Variahle I.ACHR.variables.errorFlag
,TI Apply Cancel |

Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

It is also easy to create your own interface. Open the file acme_four_sim.cmd in atext editor.
Thisisacustom dialog box modification, which also addsaspecial Acme Four Post Simulation
item under the Tools menu. Output is shown next:

i T et
S I T—
* [ool o b i
g P [PTSyTpa—
Gl T FrrdAlagen
Hambar- ¥ S Lot 5 b’
Iruis bvm
Lt b
j Fpddy [orecssng
Fra Lis plm e [TRRR
i j S A
Fopmpuarcy; rgm Sevend dalele
Pt Tt Pl
b s Mo . =
Moo | s H
Lt Tl : [T
Rl] | s 1 i
Ling P phi Bl Bt ']
L
o R T i
eoromsly
[T
ey Bem

Creating an assembly using the test rig

At thispoint you should have made atest rig template, test rig model file (.cmd), analysis macro,
private binary, and custom interface. Y ou are now ready to run afour-post simulation on a
full-vehicle assembly.

To create an assembly:

1

Start ADAMS/Car with your private binary by selecting ADAMS 11.0 - > ADAMS/Car
-> Advanced, from the Start menu.

At the prompt that appears, enter ru-private.

Make sure you select Standard Interface if ADAMS/Car prompts you about which interface
is desired.

From the File menu, point to New, and then select Full-Vehicle Assembly.

In the Assembly Name text box, enter test_4post_vehicle.

Four-Post Vertical Excitation Test 243

Four-Post Vertical Excitation Test...

10
11
12
13
14
15

Right-click the Front Susp Subsystem text box, point to Search, point to <shared>/
subsystems.thl and left-click to open up a selection window with the various available
vehicle subsystems displayed. Select TR_Front_Suspension.sub.

Right-click the Rear Susp Subsystem text box, and follow the instructions above to select
TR_Rear_Suspension.sub.

In the Steering Subsystem text box, select TR_Steering.

In the Front Wheel Subsystem text box, select TR_Front_Tires.sub.
In the Rear Wheel Subsystem text box, select TR_Rear _tires.sub.
In the Body Subsystem text box, select TR_Body.sub.

Make sure that Powertrain Subsystem is not selected.

Make sure that Brake Subsystem is not selected.

Set Vehicle Test Rig to __acme_4PostRig.

Select OK.

It will take sometime for the assembly to complete. When it is done, you will still need to
switch the tire model to Delft, because it supports zero-velocity friction.

To switch the tire model to Delft:

1

244

Right-click the mouse on the vehicle's left-front wheel, point to Wheel:whl_wheel, and then
select Modify.

Change the Property File to <shared>\tires.tbl\mdi_delft01.tir.
Select OK.

Right-click the mouse on the vehicle’s left-rear wheel, point to Wheel:whl_wheel, and then
select Modify.

Change the Property File to <shared>\tires.tbl\mdi_delft01.tir.
Select OK.

Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

7 From the View menu, select Assembly, and select OK to make sure that the top level is
selected.

Notice that the whedl s on the right side of the car automatically adjust because of symmetry
relations. The model should now look something like this:

Four-Post Vertical Excitation Test 245

Four-Post Vertical Excitation Test...

Running a four-post simulation

To run a sample four-post simulation:

1
2

From the Tools menu, select Acme Four-Post Analysis.

Fill in the dialog box so it looks as follows:

_

sty T

rwp-* e [

CadTha

b 0 5 bags |'"

- r——

Fem (1 maend 1=

Lty el j

ey S |

L e el [rees =

Lerwrd Pt | =

[|-= =

LeaFis B =
(o] _»m | oo |

Select OK.

The simulation will take some time to run.

To review the animation:

From the Review menu, select Animation Controls.

Press the Play tool.

Y ou can aso review plots of simulation results by selecting Postprocessing Window from
the Review menu. When done, return to ADAMS/Car by selecting Exit.

Y ou should now save this assembly and exit.

To save the assembly and exit:

246

From the File menu, point to Save, and then select Assembly.
Select Close assembly after save.
Select OK.

ADAMS/Car savesthis assembly in your private database.

Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Modifying existing full-vehicle assemblies

To open the assembly file just created and see how the test rig is
specified:

1 Outside of ADAMS/Car, find your private database, and open the assemblies table.
2 Inatext editor, open the file test_4post_vehicle.asy.

3 Scroll down until you find the text:

$ TESTRIG
[TESTRIG]
USAGE = '__acme_4PostRig’

4 Closethefile.

Note that if you had an existing assembly with the test rig specified as
__MDI_SVT_TESTRIG, you could just edit the assembly file and changeit to read
__acme_4PostRig.

Adding custom analysis procedures to ADAMS/Car

A minimum prerequisite of adding an analysisto ADAMS/Car is athorough understanding of
the ADAMS/View macro language. Y ou should also reference Customizing the ADAMS Car
Interface on page 11 of the guide, Customizing ADAMS/Car as you work through this section.

ADAMS/Car is designed with an open architecture to facilitate extensions based on customer
requirements. Most often users desire to extend the analysis capabilities of ADAMS/Car to
include an analysis type or maneuver that is typical within their company, but not included in
the ADAMS/Car product. All analysesin ADAMS/Car are defined using macros. Therefore,
adding a new analysisto ADAMS/Car can be as simple as adding anew macro. A custom
graphical interface to the new macro may also be created to facilitate usage, but is not required.

This example will provide you with step-by-step instructions to create your own macro from a
given user scenario. The objective of the analysisisdescribed in detail in the attached Four-Post
Vertical Excitation Test document. Each of the steps outlined in the above Analysis Macro
Structure section will be followed to put together the complete macro. The user scenariois
described in an attached Four-Post Vertical Excitation Test case study, and concerns the
implementation of a user macro to analyze a full-vehicle mounted on a four-post shaker table
with vertical maotion inputs.

Four-Post Vertical Excitation Test 247

Four-Post Vertical Excitation Test...

Getting started

The best way to get started creating anew analysisis not to start from scratch. Thereisabroad
range of analysesthat are possible withinthe ADAM S/Car product asit is shipped. Examinethe
existing functionality to find an analysis that closely suites the analysis you want. Once you
have selected an existing macro, simply modify it to suite your needs. If you don’'t know how to
examine existing macrosin ADAMS/Car, see Customizing the ADAMS/Car Interface on

page 11 of the guide, Customizing ADAMS/Car.

Where possible, existing utility macros should be used in custom analysis macros. Using the
existing utilities macros shipped within ADAM S/Car has afew benefits. First, these macrosare
already written and tested by M DI. Second, using these macros reduces the amount of work
required to add a custom analysisto ADAMS/Car. Third, these macros provide acommon basis
for customization, facilitating maintenance and debugging between different projects.

Any of the standard macros may be viewed viathe macro editor inside ADAMS/Car. From the
ADAMS/Car menu, choose Tools->Macro->Edit->Modify to bring up the database navigator,
at which point you may select the macro you want to display. Selecting mac_ana_ful_fou_sub
from the database navigator, for instance, will allow you to view the standard macro for
submitting a full-vehicle four-post analysis.

Analysis macro structure

In generd, al the analysis macros within ADAMS/Car are structured the same. Thisis
especialy trueif you arelooking only at a particular class of analysis macros. For example, all
the open-loop full-vehicle analysis macros are surprisingly similar. The same holds true for all
the full-vehicle analysis macros based on the Driving Machine. Typically, a small section
within amacro is what makes that macro and the resulting analysis unique. Every analysis
macro in ADAMS/Car has the same basic structure.

Parameter definition

Parameters are the means by which the end user inputs values into the macro. They are
placeholders for information that the end user provides when the macro is executed. Macro
parameters are described in detail in Automating Your Work Using Macros on page 53 of the
guide, Customizing ADAMS/View.

248 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

Two parameters that are common in all analysis macros within ADAMS/Car are the assembly
and output_prefix parameters. The assembly parameter is used to specify which ADAMS/Car
assembly within the session will be analyzed. The output_prefix parameter isused to specify the
unique prefix to be added when creating output files specific to the analysis. These parameters
are usually defined first in the analysis macro as seen in the example.

The parameters for the four-post maneuver were determined from the attached Four-Post
Vertical Excitation Test document. A description isincluded for the parameters whose values
areimportant for the success of the four-post simulation.

I $assembly:t=model

I $output_prefix:t=string

I Scomment:t=string:d=""

I $end_time:t=real:gt=0

I $Snumber_of_steps:t=integer:gt=0

I $analysis_mode:t=list(interactive,graphical,background):d=interactive
I $peak_displacement:t=real:gt=0

I $units:t=list(mm):d=mm

I $frequency_range:t=real:gt=0

I $excitation_mode:t=list(heave,pitch,roll,warp):d=heave
I $load_results:t=list(yes,no):u=yes

I $brief:t=list(on,off):u=off

I $log_file:t=list(yes,no):u=yes

I $error_variable:t=variable:d=.ACAR.variables.errorFlag

Parameter descriptions:
= assembly: This parameter expects the user to specify an existing model.

= analysis_name: A string value indicating the name prefix for all files common to this
analysis.

= end_time: A rea vauetelling ADAMS/Solver the end time of the four-post
maneuver.

= number_of_steps: Aninteger value telling ADAM S/Solver the number of output
steps.

= analysis_mode: A string value to specify the mode of the analysis. The two valid
modes are interactive or background.

= peak_displacement: The maximum amplitude of the shaker pad vertical
displacement.

Four-Post Vertical Excitation Test 249

Four-Post Vertical Excitation Test...

= units: Hardcoded to mm for tutorial, can be expanded to include other units.

= frequency_range: A real value indicating the frequency range of the actuator motion
functions.

= excitation_mode: A list value indicating the direction of the shaker pad motions.

= log_file: Indicates if an analysis log file should be generated.

Error handling

The error handling section of each analysis macro should contain checks to identify
inappropriate assemblies or invalid user-entered values. The error handling section should also
contain checks to ensure the assembly contains subsystems that are required to perform a
desired maneuver. For example, if you are creating an analysis macro to perform afull-vehicle,
straight-line braking maneuver, a check should be performed to ensure that a brake subsystem
exists within the assembly. The error handling section should also have checks to ensure that
the values specified by the user for specific parameters are realistic.

The four-post analysis must be performed withthe __acme_4PostRig test rig described in the
attached case study. The setup of the assembly and test rig, described in alater section, perform
actions based on the elements known to exist inthe __acme_4PostRig test rig. In addition to
verifying that the correct test rig is used, the macro aso determinesif the analysisnameis
unique for this assembly.

variable set variable_name=$error_variable integer=0

I---- Check to ensure the assembly has the proper testrig ----
if condition=($assembly.original_testrig_name !="__acme_4PostRig")
acar toolkit warning &
w="Analysis cannot be submitted!", &
"The assembly does not have the proper testrig. This analysis only", &
"works with assemblies using the ’__acme_4PostRig’ testrig.”
variable set variable_name=$error_variable integer=1
return
end

I---- Check if analysis name already exists ----
if condition=(db_exists("$assembly.$'output_prefix’_fourpost"))
if condition=(alert("question”,"An analysis called
variable set variable_name=$error_variable integer=1
return
end
end

250 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

The acar toolkit warning utility macro used in the above example will display the user message
in asmall window that will remain open until you select OK. This utility macro is used
throughout ADAM S/Car to inform the user they have entered an error condition.

Reading of property files

Many force e ementswithin ADAM S/Car get their nonlinear characteristicsfrom property files.
Thisinformation must be updated immediately before an analysisis performed. If the property
files are not read, the force elements will typically contain inappropriate information that will
directly affect the accuracy of the analysis results.

After validation of the assembly, property file information must be read in and assigned. The
following example can be used directly within a user’'s analysis macro. The $assembly
parameter must be an ADAM S/Car assembly as described above. Property filesareread in via
auser function as described in the following example. This example aso demonstrates how to
use the acar toolkit message utility macro to descriptive text to the message window. It isvery
important that the property files are read before the analysisis submitted to ADAMS/Solver.

I---- Clear out message window ----
acar toolkit message &
message="" append=no display=no closeable=yes echo_to_logfile=no

I---- Read property files ----

acar toolkit message &

message="Reading in property files..."
variable set variable_name=$_self.readEm &

integer_value=(eval(read_property_file($assembly)))
acar toolkit message &
message="Reading of property files completed."

Setup of assembly and test rig

The setup of the assembly and test rig is the section of the analysis macro that is unique from
other analysis macros. Within this section of the macro, the macro modifies elements of the test
rig and assembly based on the type of maneuver being performed and the parameters specified
by the user.

The setup of theassembly and test rig isthe section of thefour-post analysis macro that isunique
from other anaysis macros. Within this section of this macro, elements of the test rig and
assembly are modified specific to the four-post maneuver and user input. The code fragments
for the four-post setup are shown below, with a description for each section where needed.

Four-Post Vertical Excitation Test 251

Four-Post Vertical Excitation Test...

I---- Setup the assembly for the maneuver ----
acar toolkit message &
message="Setting up vehicle assembly for four post shaker..."

Thetire reference markers need to be assigned to the appropriate test pad on the shaker table.
The naming conventions of the communicator variables for the reference markers are
considered fixed, in that the macro looks for the communicators known to exist in the four-post
test rig. Note that the setup of the tire reference markers will only occur once for a particular
assembly; if the same assembly is used for multiple four-post analyses, the initial setup will be
valid for each analysis.

For each wheel, the tire reference marker is assigned to a shaker pad. The first step isto find
each tirein the full-vehicle assembly. The reassignment occurs via an output communicator in
the test rig. For more information on communicators, see Setting Up Communication Between
Subsystems and Test Rigs on page 29, in the guide, Building Templates. The communicator
holds the name of the part on the shaker pad where thetire reference marker should be attached.

if condition=(!db_exists("$assembly.fourpostSetup"))

I---- Parameterize the 4post pad height to the global road height marker just previously
adjusted ----

marker modify &

marker_name=$assembly.testrig.ground.std_tire_ref &
location=($assembly.ground.std_tire_ref.location) &
relative_to=$assembly.testrig.ground

variable set variable=$_self.frontWheel &
object_value=(eval(subsystem_lookup($assembly,"wheel","front")))

variable set variable=$_self.leftFrontWheel &
object_value=(eval(db_filter_name(db_children($_self.frontWheel[1],"ac_tire"),"til_*")))
variable set variable=$_self.rightFrontWheel &

object_value=(eval(db_filter name(db_children($_self.frontWheel[1],"ac_tire"),"tir_*")))
variable set variable=$_self.rearWheel &
object_value=(eval(subsystem_lookup($assembly,"wheel","rear")))

variable set variable=$_self.leftRearWheel &

object_value=(eval(db_filter name(db_children($_self.rearWheel[1],"ac_tire"),"til_*")))
variable set variable=$_self.rightRearWheel &
object_value=(eval(db_filter_name(db_children($_self.rearWheel[1],"ac_tire"),"tir_*")))
marker modify &
marker_name=(eval($_self.leftFrontWheel.object_value.ref_marker.object_value)) &
new_marker_name=(eval($assembly.testrig.col_front_pad_mount[1]//"."//
$_self.leftFrontWheel.object_value.ref_marker.object_value.name))

252 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

marker modify &
marker_name=(eval($_self.rightFrontWheel.object_value.ref_marker.object_value)) &
new_marker_name=(eval($assembly.testrig.cor_front _pad_mount[1]//"."//

$ self.rightFrontWheel.object_value.ref_marker.object_value.name))

marker modify &
marker_name=(eval($_self.leftRearWheel.object_value.ref_marker.object_value)) &

new_marker_name=(eval($assembly.testrig.col_rear_pad_mount[1]//"."//

$ self.leftRearWheel.object_value.ref _marker.object_value.name))

marker modify &
marker_name=(eval($_self.rightRearWheel.object_value.ref_marker.object_value)) &

new_marker_name=(eval($assembly.testrig.cor_rear_pad_mount[1]//"."//
$_self.rightRearWheel.object_value.ref_marker.object_value.name))
variable set variable=$assembly.fourpostSetup &

integer_value=1

end

The motion actuators driving the displacement of the shaker pads must be reset for each

individual four-post analysis. Thisisin contrast to the tire reference marker setup described

above, which needsto occur only once for a particular assembly, and remains valid for all

successive four-post analyses. The four excitation modes are heave, pitch, roll, and warp. Each
of the four shaker padswill have the same magnitude of motion, but a specific excitation mode
will determine the direction of the motion. In heave mode, all four shaker padswill moveinthe
same direction. In pitch mode, the front and rear tires will move in opposite directions. For roll
mode, the left and right tires have motion in opposite directions. When warp modeis specified,
the left front and right rear tires will move opposite to the direction traveled by the right front

and left rear tires. The different excitation modes are achieved by specifyinga"1" or "-1"
multiplier at the beginning of the actuator function definition.

I---- Assign actuator functions based on excitation mode ----
I-Heave Excitation
if condition=("$excitation_mode" == "heave")
acar template_builder actuator set function &
actuator=$assembly.testrig.jms_left_front_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_right_front_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_left_rear_actuator &

Four-Post Vertical Excitation Test

253

Four-Post Vertical Excitation Test...

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_right_rear_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
I-- Pitch Excitation
elseif condition=("$excitation_mode" == "pitch")
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_left_front_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=$assembly.testrig.jms_right_front_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_left rear_actuator &

function="-1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=$assembly.testrig.jms_right_rear_actuator &

function="-1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
I-- Roll Excitation
elseif condition=("$excitation_mode" == "roll")
acar template_builder actuator set function &
actuator=$assembly.testrig.jms_left_front_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_right_front_actuator &

function="-1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=$assembly.testrig.jms_left_rear_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_right_rear_actuator &

function="-1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
I-- Warp Excitation
elseif condition=("$excitation_mode" == "warp")
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_left_front_actuator &

254 Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_right_front_actuator &

function="-1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_left_rear_actuator &

function="-1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
acar template_builder actuator set function &
actuator=%assembly.testrig.jms_right_rear_actuator &

function="1*$peak_displacement*sin(.5*360d*$frequency_range/$end_time*time**2)"
end

Submitting the analysis

A common requirement of submitting the analysisto ADAMS/Solver is the existence of an
ADAMS dataset file (.adm) and an ADAMS command file (.acf). The two basic types of
anayseswithin ADAM S/Car are suspension and full-vehicle analyses. In both of these cases, a
utility macro is used to generate the ADM and ACF files and submit the analysis to
ADAMS/Solver. These utility macros are executed from within each of the suspension or
full-vehicle analysis macros.

After setting up the assembly, it isready to be submitted for the four-post analysis. Sincethisis
afull-vehicle assembly, the corresponding full-vehicle submission utility macro isused. Inthis
case, two additional parameters are specified to have non-default values for the four-post
simulation: generate_road_geometry and simulation_type.

The code fragment for calling the four-post full-vehicle submission macro is shown, with the
important associated parameters described below.

I---- Perform the analysis ----

acme analysis full_vehicle four_post submit &
assembly=$assembly &
analysis_name="$'output_prefix’_fourpost" &
end_time=$%end_time &
number_of steps=$number_of steps &
analysis_mode=%analysis_mode &
load_results=$load_results &
brief=$brief &
road _data file="BEDPLATE" &
generate_road_geometry=no &
simulation_type=fourpost

Four-Post Vertical Excitation Test 255

Four-Post Vertical Excitation Test...

Parameter descriptions:

assembly: This parameter expects the user to specify an existing model.
analysis_name: A string value indicating the name prefix for all files common to this
analysis.

end_time: A real valuetelling ADAM S/Solver the end time of the maneuver.

number_of_steps: An integer value telling ADAM S/Solver the number of output
steps.

analysis_mode: A string value to specify the mode of the analysis. The two valid
modes are interactive or background.

load_results: A string value that specifies if the results of the analysis should be read
in after the analysisis complete. Expected values are yes or no.

road_data_file: Hardcoded to BEDPLATE to indicate that the car will not be driven
across aroad surface. ADAMS/Car will internally interpret and understand this
hardcoded value.

generate_road_geometry: Set to no to indicate that ADAMS/Car should not generate
ageometric representation of the data found in the road_data_file.

simulation_type: Hardcoded to fourpost to indicate that the full-vehicle will be
attached to a four-post shaker table. ADAMS/Car will internally interpret and
understand this hardcoded value to produce the correct .adm and .acf files.

Logging the analysis

Many users consider it very important to generate alog describing the analysisthat is
performed. Generation of thelog fileisimportant becauseit provides historical datathat can be
stored along with the results of the analysis. The stored data can be useful and is sometimes
required to allow a user to regenerate the results of a particular analysis. These utility macros
are executed from within each of the suspension or full-vehicle analysis macros.

Utility macros exist that can be used within your custom analysis macro to generate alog file.
A utility macro exists for both suspension and full-vehicle analyses. With the analysis
completed, the results may be logged to afile. In addition, final diagnostic messages may be
displayed to the message window.

256

Four-Post Vertical Excitation Test

Four-Post Vertical Excitation Test...

if condition=($log_file)
acar analysis full_vehicle log &

assembly=$assembly &
analysis_name="$'output_prefix’_fourpost" &
analysis_type="Four Post Shaker Test" &
analysis_log_file="$%'output_prefix’_fourpost.log" &
comment=$comment &
end_time=%end_time &
number_of_steps=$number_of_steps &
road_data file="BEDPLATE" &
initial_velocity=0.0 &
velocity _units="m_sec" &
input_parameters="general input" &
parameter_values=("$number_of_steps")

end

if condition=("$analysis_mode" != "background")
acar toolkit message &
message="Simulation is complete."
end

Finishing up

Finally, it isimportant to ensure all local variables created in the macro using the $_self
nomenclature are del eted.

variable delete variable_name=(eval(db_children($_self,"variable"))

Four-Post Vertical Excitation Test 257

Four-Post Vertical Excitation Test...

258 Four-Post Vertical Excitation Test

C ADAMS/CAR FILEs

What's in this appendix:
= ADAMS/Car Configuration Files, 260

= ADAMS/Car Data Files, 260

259

ADAMS/Car Files...

Table 3. ADAMS/Car Configuration Files

The file: Contains:

.acar.cfg Information that ADAM S/Car reads during startup to correctly
initialize the session. There are private, shared, and site
configuration files.

acar.cmd Commands for starting ADAMS/Car.

acarAS.cmd Preferences you set. The As stands for After Sartup, meaning
that ADAMS/Car reads it after it reads other setup files.

acarBS.cmd Preferences you set. The BS stands for Before Sartup,
meaning that ADAM S/Car reads it before it reads other setup
files.

Table 4. ADAMS/Car Data Files

The file: Does the following:

Aero_force (.aer) Contains wind-force mappings.

Assembly (.asy) Lists the subsystems that make up ADAM S/Car assemblies.

Autoflex input Describes a section+centerline+attachment points (an

(.afi) extruded solid). The executable, afimnf.exe, processes the
fileto create amodal neutral file (MNF) flexible body.

ADAMS/Car Directory that serves asthe ADAMS/Car database.

database (.cdb)

Driver control Contains maneuver descriptions for the Driving Machine.

(.dcf)

Driver data (.dcd) Contains data for the Driving Machine.

Differential (.dif) Definesthe dlip speed-torque characteristics of adifferential.

Driver loadcase Contains driving signals used in a data-driven, full-vehicle
(.dri) analysis. The driver loadcase specifies inputs to the vehicle.
Loadcase (.Icf) Contains data used in suspension analyses.

260 ADAMS/Car Files

ADAMS/Car Files...

Table 4. ADAMS/Car Data Files (continued)

The file:

Does the following:

Model (.mdl)

Obsolete

Plot configuration
(-plt)

Defines a suite of plotsto be automatically generated after
completion of an analysis.

Powertrain (.pwr)

Defines the engine speed-torque relationship at different
throttle positions.

Property

Contains force properties for the entities:
= Bump stops (.bum)

= Bushings (.bus)

= Dampers(.dpr)

= Reboundstop (.reb)

= Spring (.spr)

= Tire(tir)

Road Data (.rdf)

Contains data on road.

Subsystem (.sub)

Contains information unique to the specific instance of the
template the subsystem file references.

Suspension curves

(.scf)

Used in the Conceptual Suspension Modeling add-on
module.

Steering_assist
(.ste)

Contains torsion bar datarelating torsion bar deflection to
both torque and pressure.

Tables (.thl)

Subdirectory in the ADAMS/Car database called tables.
Each subdirectory contains files for specific types of
components, such as springs and dampers, or filesfor
performing tests, such as |loadcases and wheel envelopes.

Templatefile (.tpl)

Defines the topology and major role (for example,
suspension or steering) of ADAMS/Car models.

Wheel envelope
(-wen)

Contains location vector information that represents the
wheel center |ocation and orientation in space. Used for
wheel envelope analyses.

ADAMS/Car Files

261

ADAMS/Car Files...

262 ADAMS/Car Files

	Title
	Contents
	Welcome�to�ADAMS/Car�Training
	A Brief History of ADAMS
	About Mechanical Dynamics
	Referencing Online Guides
	Getting Help at Your Job Site
	A Review of Basic ADAMS Terminology

	Introducing ADAMS/Car
	Motivation for Using ADAMS/Car
	User Modes
	������Database Structure—A Directory Hierarchy
	Configuration File
	Workshop 1—Open and Run an Assembly

	Basic Concepts
	Data Hierarchy
	Test Rig
	Major and Minor Roles
	Naming Convention
	Workshop 2—Templates versus Subsystems

	Creating and Adjusting Subsystems
	Creating Subsystems
	Adjusting Hardpoints
	Adjusting Parameter Variables
	Adjusting Mass Properties
	Adjusting Springs and Dampers
	Workshop 3—Creating and Adjusting Suspensions

	Using the Curve Manager
	Property File Types
	Creating Property Files
	Modifying an Existing Property File
	Plot versus Table
	Workshop 4—Modifying Springs with the Curve Manager

	Creating and Simulating Suspensions
	Creating Suspension Assemblies
	Half-Vehicle Analyses
	Suspension Parameters
	Creating Loadcases
	Warning Messages
	Files Produced by Analyses
	Workshop 5—Running Suspension Analyses

	Creating and Simulating Full Vehicles
	Creating Full-Vehicle Assemblies
	Shifting Subsystems
	Updating Subsystems
	Updating Assemblies
	Full-Vehicle Analyses
	Adjusting Mass Automatically
	Workshop 6—Running Full-Vehicle Analyses

	Driving Machine
	Standard Driver Interface (SDI) and Driving Machine
	Why Use SDI?
	Creating Inputs for SDI
	Creating .dcf and .dcd Files
	Workshop 7—Editing .dcf and .dcd Files

	Plot Configuration Files
	What is a Plot Configuration File?
	Workshop 8—Creating Plot Configuration Files

	Parameterization
	Parameterization in ADAMS/Car
	Creating Hardpoints
	Creating Construction Frames
	Location Parameterization
	Orientation Parameterization

	Building Templates
	Template Overview
	Template Topology
	File Architecture
	Building a New Template
	Types of Parts
	Rigid Bodies (Parts)
	Flexible Bodies (Parts)
	Geometry
	Attachments (Joints and Bushings)
	Springs
	Dampers
	Bumpstops and Reboundstops
	Suspension Parameter Array
	General Advice
	Workshop 9—Template-Builder Tutorial

	Communicators
	Types of Communicators
	Classes of Communicators
	Communicator Roles
	Naming Communicators
	Matching Communicators During Assembly
	Matching Communicators with Test Rigs
	Workshop 10—Getting Information About Communicators

	Using Flexible Bodies
	Flexible Body Overview
	Limitations of Flexible Bodies
	Getting Flexible Bodies
	Workshop 11—Flex Tutorial

	Requests
	Creating New Requests
	Types of Requests

	Tires
	Tire Overview
	ADAMS/Tire Modules
	Tire Models
	Tire Analyses
	Workshop 12—Building a Wheel Template

	Exploring Templates
	Investigating Templates
	Understanding Templates
	About the Database Navigator
	Workshop 13—Exploring and Completing Templates

	Additional Applications
	Conceptual Suspension Module and Driveline
	Linear and Controls
	Insight and Hydraulics
	Vibration and Durability
	Workshop 14—Using ADAMS/Linear with ADAMS/Car

	Workshop 15—Full-Vehicle Assembly
	Example Analyses
	Types of Analyses
	Gather Data for the Model
	Packaging Analysis on Suspension
	Kinematic Analysis on Suspension
	Suspension-Compliance Analysis
	Static-Loading Durability Analysis
	Dynamic-Loading Durability Analysis
	Front Suspension Analyses
	Full-Vehicle Design and Analysis

	Four-Post Vertical Excitation Test
	Introduction
	Creating a test rig template in ADAMS/Car
	Preparing to create a private binary
	Creating an assembly using the test rig
	Adding custom analysis procedures to ADAMS/Car

	ADAMS/Car Files
	ADAMS/Car configuration files
	ADAMS/Car data files

